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Chapter 1: A Basic Introduction to Op-
tical Materials
Silica

The most widely used optical material is silica. The word “glass” and silica are often used inter-
changeably, although strictly speaking the term glass refers to a type of solid that is produced
by rapid melt quenching (vitreous solid), and is not necessarily specific to silica. Silica is the
oxide of silicon, SiO2. Beach sand, as well as most of earth’s crust is mostly made up of sil-
ica. Optical glass is made by purifying and melting raw silica, and then rapidly cooling it to
solidify it. The rapid cooling creates glass and prevents crystallization. The resulting material
is known as fused silica. Fused silica has excellent optical transparency from the UV to the
near infrared. However, fused silica is expensive due to its purity and high melting temperature
(1700◦C). Therefore, fused silica is only used in the most demanding applications that require
high transparency and high temperature resistance.

The more widely used type of glass in optical components is BK7 – borosilicate glass. This is
not pure SiO2 as it contains boron oxide. BK7 has a very low thermal expansion coefficient
so it is also used to make pyrex brand glassware. The melting temperature is 820◦C, which is
significantly lower than fused silica. As a result, it is also significantly less expensive. Soda-lime
glass is another older form of glass which contains potassium oxide and calcium oxide, which
are added to reduce the melting temperature down to 500◦C. These are even cheaper than BK7,
and are used in commercial windows, but the optical transmission is much lower, especially
near the UV wavelengths.

Quartz is also SiO2, but it is the crystalline form of SiO2. It is anisotropic as well as piezoelec-
tric. It is also far more expensive, so it is only used when ultra-high purity and crystallinity is
required. The crystalline nature also make quartz more brittle than fused silica.

Other Common Dielectrics

CaF2 (calcium fluoride) and MgF2 (magnesium fluoride) are crystals used in some optical com-
ponents due to their superior UV transmission properties. Al2O3 (aluminum oxide, or alumina)
is also a transparent dielectric with a relatively high refractive index. The crystalline form of
Al2O3 is sapphire. TiO2 (titanium dioxide, or titania) is also used in optical coatings as a high
index film. It’s crystalline form is known as rutile. The optical dispersion properties of a large
number of materials can be found in public domain databases. One such database is . All of
these materials are widely used in optical components and also in a thin film form for creating
optical filters and anti-reflection coatings.

9
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Semiconductors - Silicon

Silicon is by far the most commonly used semiconductor. Pure silicon is produced by purifying
beach sand (SiO2), and is the staple of the electronics industry. Unlike silica and quartz, the
word silicon is used to describe the amorphous form as well as the crystalline form. Amor-
phous silicon is a black powdery material, similar to carbon. Crystalline silicon is grey, and is
not transparent in the visible spectrum. However, it is very transparent in the infrared region
for wavelengths longer than 1.1µm. Therefore, crystalline silicon is used for making refractive
optical components in the infrared region where fused silica may not be transparent (for ex-
ample in the mid-infrared 3-5µm spectrum). Since silicon is a semiconductor, absorbed light
produces usable carriers that can be used in photon detection. Silicon photodetectors are used
in virtually all consumer cameras.

Semiconductors – III-V compounds

Due to the bandstructure of silicon, it can be used to make photodetectors, but it cannot be used
to make light emitters such as LED’s or laser diodes. III-V semiconductors are compound semi-
conductors, in contrast to elemental semiconductors such as Si and Ge. By combining a group
III element with a group V element, III-V binary compounds can be created. GaAs, GaN, InP, InSb,
InAs etc… are examples of III-V semiconductors. Most of these have direct bandgaps and can be
used as photodetectors and also as photoemitters. Each material has a different refractive in-
dex, absorption and emission spectrum. GaAs is the most commonly used III-V semiconductor
and is used to make LED’s and laser diodes. One can also combine two binary semiconduc-
tors to form ternaries like AlxGa1−xAs. By adjusting the composition, their optical properties
can be selected be fall anywhere between GaAs to AlAs. AlxGa1−xAs is used to make red laser
diodes and LED’s. GaN is used in blue and UV laser diodes and LED’s. InP and InxGa1−xAs are
used in infra-red sources and detectors. InSb and InAs are used in longer wavelength infrared
applications.

Optical Spectrum

While the general electromagnetic spectrum has an infinite range, in the context of photonics
what we consider as “light” has a few well-defined spectral windows. These windows are defined
around the transmission properties of certain materials or the atmosphere.
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Figure 1: Commonly used optical spectral bands in photonics.

Figure 2: Atmospheric transmission spectrum. Source: Wikipedia
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Homework 1
1. Show that the energy E of a photon (in eV) can be expressed as a function of its wavelength

λ (in µm) as E = 1.24
λ .
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QualitativeDescription of Electronic Bands
in Semiconductors
Solitary atoms to crystals

Single atoms have discrete energy states due to the resonance of electron waves around the
atom. This is a well-understood concept. A hydrogen atom only has one electron, but larger
atoms have more. Even if an atom has a large number of electrons, its chemical and optical
properties are mostly governed by the electrons in the highest energy states (i.e., the ones that
are most loosely bonded to the nucleus). The lower energy electrons are tightly bounded to the
nucleus, and rarely play a role except in high energy phenomena.

Silicon has 14 electrons, which are arranged as 1s22s22p63s23p2. These are discrete energy
states of a single silicon atom. If we consider a collection of N silicon atoms that are isolated
from each other, all of them will have the same discrete energy levels. In other words, we will
have 14 states with N electrons in each state. Now, if the atoms are brought closer together
such that they start to interact, the repulsion between electrons will produce a splitting of the
energy levels. This will cause each of the 14 energy levels to split N-ways. As the atoms are
brought closer and closer together, the energy levels will split further away from each other.
This is how energy bands form in a solid. In other words, each discrete energy state of a solitary
atom spreads out to create a band. If N is a large number, the separation between these split
energy levels will be small. As a result, the band can be treated as a continuum rather than
N discrete levels. The band that corresponds to the top most state (3p2) is called the valence
band. The band above that (corresponding to 4s2) is the conduction band. The difference be-
tween the highest point of the valence band and the lowest point of the conduction band is the
energy bandgap.

Figure 1: Evolution of the band structure due to inter-atomic interactions
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Figure 2: Band Structure of GaAs (left), Silicon (right)

Thermal excitation

Since 3p2 was the highest state of the solitary silicon atom, one would expect the highest oc-
cupied band to be the valence band, and the conduction band to be empty. This is true only
at 0K temperature. At this temperate, the material will be a perfect insulator. In order to make
an electron move (hence increase its kinetic energy), its total energy has to be increased. This
is only possible if the electron is able to accept some energy and move to a slightly higher en-
ergy state. If every single state in the valence band is occupied, then none of the electrons can
change their energies, so they will not be able to respond to an external electric field.

At higher temperatures, some electrons in the valence band can acquire sufficient energy to
become elevated into the conduction band. The bandgap of silicon is 1.1eV. At room temperature
the average thermal energy is kT = 25meV. Even though 25meV is significantly smaller than 1.1eV,
we should remember that this is the average energy; it does not mean every single electron
will have 25meV. A fraction of electrons will have energy larger than 25meV, and a very small
fraction will have energy greater than 1.1eV. Electrons with energy greater than 1.1eV will be
capable of moving up into the conduction band. This creates vacancies in the valence band, so
the electrons in the valence band can now respond to an external electric field. Additionally,
electrons in the conduction band can also respond to the same electric field because they are
also in a sea of empty states. This makes silicon a “semi” conductor at room temperature.

The conductivity of a semiconductor is directly related to the number of electrons in the conduc-
tion band and the number of vacancies (holes) in the valence band. As a result, the conductivity
of silicon will increase with increasing temperature.

One would also expect that as band gap gets larger, the conductivity should decrease. Quartz
has a band gap of 9eV, and consequently, behaves as an insulator at room temperature. At
sufficiently high temperatures, even these crystals will start to conduct current, assuming the
material does not melt or evaporate before reaching those temperatures.

At the other end of the spectrum, materials with narrow band gaps will have very high con-
ductivities even at low temperature. InSb has a bandgap of 0.17eV. This is not too far from the
average thermal energy of 25meV. As a result, a large number of electrons will be elevated into
the conduction band. As a result, its conductivity at room temperature is very close to that of
a metal. At sufficiently low temperatures, such as 77K, InSb behaves similar to silicon at room
temperature.
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Metals

Metals are different from semiconductors in the sense that they do not have a bandgap. They
actually have a negative bandgap because the conduction and valence band overlap each other
allowing the electrons to exist in both bands without having to traverse a gap. As a result, a
metal will have mobile electrons in the conduction band even at 0K temperature.

Carrier Mobility

Conductivity depends not just on the concentration of electrons and holes, but also on their
mobilities. The expression for conductivity is

σ = q (µnn+ µpp) . (1)

Mobility is the ratio between the average drift velocity of the carrier and the electric field. Elec-
trons and holes have different mobility values. They are also different from one material to
another. Generally speaking, mobility decreases with increasing temperature. This is due to
the increasing lattice vibrations which impedes the motion of electrons and holes.

The combined effect of temperature on carrier concentration and carrier mobility results in
opposite trends in a metal and a semiconductor. In a metal, as temperature increases the carrier
concentration is not affected because there is no band gap. However, mobility decreases. As a
result, the conductivity of a metal will decrease as temperature is increased. In a semiconductor,
as temperature increases the carrier concentration will increase dramatically. This more than
offsets the decrease in mobility. As a result, the conductivity will increase with temperature.
The conductivity of a semiconductor is more sensitive temperature than a metal. This effect
can be used as a temperature sensor, such as in a thermistor. This is a semiconductor device
whose conductivity is calibrated to allow small changes in temperature to be detected.

As an interesting side note, consider a filament light bulb. If you measure the resistance of
the filament at room temperature, it will be significantly smaller than the value required to
produce the rated output of the bulb. For example, a 25W, 120V light bulb should have a re-
sistance of 576Ω, but if you measure it with an ohmmeter it will probably read something like
100Ω. This means, when the light bulb is turned on, the instantaneous power dissipation will be
144W, falling to 25W as the filament reaches its operating temperature. This should explain why
filament light bulbs fail mostly when they are turned on rather than during a steady operation.

Thermistors

Shown here is a typical resistance vs temperature curve of a commercial NTC (Negative tempera-
ture coefficient) thermistor. Thermistors have a greater sensitivity compared to thermocouples,
but they have a smaller range.
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Figure 3: Resistance vs temperature of a commercial thermister. Source: TDK.

Photoconductors

In the case of thermistors, thermal energy elevates an electron from the valence band to the
conduction band. Photoconductors function almost identically to thermistors, except they re-
spond to light instead of temperature. They are also known as photoresistors, or simply as pho-
tocells. Photons with energy greater than the bandgap will elevate electrons from the valence
band to the conduction band, resulting in an increased conductance (or reduced resistance).

CdS is a popular semiconductor used in photocells. Its bandgap of 2.42eV corresponds to a
wavelength of 0.87µm. As a result, it is able to absorb the entire visible spectrum. Silicon, whose
bandgap is 1.1eV can sense all wavelengths up to 1.1µm, which includes the visible wavelength
range as well as the near infrared.

Figure 4: Resistance vs illumination of a commercial CdS photocell. Source: Luna Optoelectronics.

Photoconductors made from narrow bandgap semiconductors can respond to longer wave-
lengths, however, they may have to be cooled to a low enough temperature to ensure they
are behave as semiconductors and not like metals. Silicon does not have to be cooled because
the average thermal energy at room temperature is 25meV which is about 44 times smaller than
its bandgap energy of 1.12eV.
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Electron and Hole Densities in Semi-
conductors
Electrons in a Solid vs Other Particles

Fermi level

Figure 1: Fermi Distribution Function assuming
EF = 0.5eV.

Fermi level is best understood in the con-
text of metals. At T=0K, the highest electron
energy is the Fermi energy. Think of a col-
umn of water in a vertical tube. The height
of the water/air interface can be thought of
as the Fermi level. Now, as temperature is in-
creased, some of the electrons at the high-
est level will acquire enough energy to jump
to an even higher level. This will leave a va-
cancy at the site it jumped from, and an oc-
cupancy at the site it is jumping to. As a re-
sult, the electron concentration will slightly
decline below the Fermi level and slightly in-
crease above the Fermi level. In the analogy
of a water column, one can think of this as
similar to the water vapor molecules jumping
up from the liquid into air. The end result is,
the electrons will have a smeared energy dis-
tribution rather than a sharp step-like distri-
bution at the Fermi level.

Therefore, Fermi level lies halfway between the fully-occupied states and the fully-unoccupied
states. Strictly speaking, Fermi level is the energy level where the occupation probability is 50%.
This distribution can be mathematically written as:

f (E) =
1

e((E−EF )/kT ) + 1
. (1)

We should be able to verify that f (0) → 1, f (∞) → 0 and f (EF ) = 0.5. We can also verify that
this smearing around the Fermi level becomes more pronounced at higher temperatures.

Density of states

The Fermi function only describes the probability of occupation of electrons. If there are no
allowed sites, they will not be occupied regardless of the probability of occupation. The math-
ematical distribution of electronic sites is the density of states (DOS) function. This is given in
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the units of number of electronic states per unit volume per unit energy.

ρc (E) =

√
2m

3/2
c

π2�h
3 (E − Ec)

1/2 for E > Ec (conduction band) (2)

ρv (E) =

√
2m

3/2
v

π2�h
3 (Ev − E)

1/2 for E < Ev (valence band) (3)

The density of states is zero at the band edges (top of the valence band and bottom of the
conduction band), but increases as a square root of energy from there. The densities are roughly
the same moving up into the conduction band and moving down into the valance band, except
for the differences in the electron effective masses.

Figure 2: Density of States in the conduction and valence bands

Electron Density

The electron density in the conduction band can be evaluated by multiplying the density of
available states by the Fermi function, which is the probability of occupation. This can be written
as:

n (E) = ρc (E) f (E) . (4)
This is the number of electrons per unit volume per unit energy. The total number of electrons
per unit volume can be obtained by integrating over all energies in the conduction band. Since
conduction band starts at E = Ec, this becomes:

n =

∫ ∞

Ec

n (E) dE =

∫ ∞

Ec

ρc (E) f (E) dE (5)

=

∫ ∞

Ec

√
2m

3/2
c

π2�h
3 (E − Ec)

1/2

( 1

e((E−EF )/kT + 1

)
dE. (6)
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For energy levels much higher than the Fermi level (E >> EF ), we can simplify the Fermi func-
tion by dropping the 1 in the denominator. Because the integration limit begins at Ec, this is
a valid assumption as long as EF is significantly lower than Ec (i.e., near the middle of the
bandgap). This assumption allows us to analytically integrate the function. The result is:

n =
4
√
2

h3
(πmckT )

3/2
e(EF−Ec)/kT . (7)

The behavior of n (E), ρc (E) and f (E) are shown in Fig 3.

Figure 3: (Left) Density of States and Fermi distribution; (Right) Carrier Density and Fermi distri-
bution

Hole Density

Similarly, the hole density in the valance band can be obtained by multiplying the density of
state by the probability of having a vacancy (which is 1− f (E)):

p =

∫ Ev

−∞
p (E) dE =

∫ Ev

−∞
ρv (E) (1− f (E)) dE (8)

=

∫ Ev

−∞

√
2m

3/2
v

π2�h
3 (Ev − E)

1/2

(1− 1

e((E−EF )/kT ) + 1

)
dE (9)

=

∫ Ev

−∞

√
2m

3/2
v

π2�h
3 (Ev − E)

1/2

( e((E−EF )/kT )

e((E−EF )/kT ) + 1

)
dE. (10)

Similar to before, if the Fermi level is significantly above the upper integration limit of Ev , we
can drop the bottom exponent, resulting in:

p =
4
√
2

h3
(πmvkT )

3/2
e(Ev−EF )/kT . (11)
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Intrinsic Semiconductors

In an intrinsic (undoped) semiconductor, the number of electrons in the conduction band should
be equal to the number of vacancies in the valence band. We will represent this as ni (for
intrinsic carrier concentration). In other words, n = p = ni. We can set equation (7) and (11)
to each other, which will allow us to move all the known variables to the right and the only
unknown (EF ) to the left. EF in this case works out to be nearly halfway inside the bandgap. It
is nearly halfway and not exactly halfway because of the differences in the effective masses. If
we work out the expression, it becomes:

EF = Ei = Ev +
Ec − Ev

2
+

3

4
kT ln

(
mv

mc

)
. (12)

The interesting thing about this result is that the Fermi level falls at a place where the density of
states is zero, i.e., within the bandgap. However, that should not be a cause for alarm because
Fermi level is just a parameter in the probability distribution function. It is not necessarily an
energy level that an electron can occupy. Using this expression for EF , the value of ni can be
evaluated. This expression results in

ni =
4
√
2

h3
(πkT )

3/2
(mcmv)

3/4
e−Eg/2kT (13)

where Eg is the bandgap Ec − Ev. Alternatively, we could have also taken a product np = n2
i

by multiplying equations (7) and (11) together and then taking a square root. Both approaches
will give the same result. For silicon at room temperature the value for ni works out to approx-
imately 1× 1010cm−3. For GaAs, this value works out to be 1× 106cm−3. These are the average
concentration of electrons and holes in these materials at room temperature.

Doped Semiconductors

Even when grown as an ultra-pure crystal, semiconductors will have trace amounts of uninten-
tional impurities that significantly affect the electron and hole concentrations. One can also
intentionally add impurities to raise the electron or hole concentrations. This process is known
as doping. When doping an intrinsic semiconductor, it is not feasible to control the intentional
impurity concentration to levels smaller than about 1 part per billion (ppb). The atomic density
of silicon is about 5 × 1022/cm−3. As a result, an impurity concentration of 1014cm−3, despite
its large magnitude, is still considered an extremely doping value. Doping levels smaller than
that are not easy to achieve.

Impurities are classified as either donors or acceptors. When donor impurities are added to a
semiconductor, the number of electrons in the conduction band will increase and the number
of holes in the valence band will decrease. This is known as n-type semiconductors. The donor
atoms are chosen such that they introduce occupied energy levels just below the conduction
band edge, as shown in Fig 4. For silicon, these are typically from group V, such as phosphorous
or arsenic. Because their energy levels are so close to the conduction band, it takes very little
energy to excite those electrons into the conduction band. At room temperature, nearly all of
those donor atoms would release their electrons into the conduction band.

Just like with intrinsic semiconductors where we set n = p = ni, in this case we will have

n = p+N+
D (14)
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Figure 4: Donor and acceptor states

where N+
D is the number of dopants that are ionized (i.e., those that have released electrons

into the conduction band). The fraction of ionized dopants (N+
D ) compared to the total dopants

(ND) will be governed by the Fermi function:

N+
D (E) = ND (E) (1− f (E)) . (15)

Using equations (6) and (10) from before, we can write this as:∫ ∞

Ec

ρc (E) f (E) dE =

∫ Ev

−∞
ρv (E) (1− f (E)) dE +

∫ +∞

−∞
ND (E) (1− f (E)) . (16)

Unlike with the conduction and valence bands where the density of states were a continuum
above and below the band edges, the donor state is at a discrete energy level ED, such as:

ND (E) = NDδ (E − ED) . (17)

When integrated, this becomes:∫ +∞

−∞
ND (E) f (E) =

∫ +∞

−∞
NDδ (E − ED) (1− f (E)) = ND (1− f (ED)) . (18)

Therefore, equation (16) becomes:

∫ ∞

Ec

√
2m

3/2
c

π2�h
3 (E − Ec)

1/2

( 1

e((E−EF )/kT + 1

)
dE =

∫ Ev

−∞

√
2m

3/2
v

π2�h
3 (Ev − E)

1/2

(1− 1

e((E−EF )/kT ) + 1

)
dE

+ND

(
1−

(
1

e((ED−EF )/kT ) + 1

))
. (19)
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Just like with the earlier case, assuming EF is sufficiently far from the band edges as well as
from ED, we can make some simplifications and rewrite equation (19) as

4
√
2

h3
(πmckT )

3/2
e(EF−Ec)/kT =

4
√
2

h3
(πmvkT )

3/2
e(Ev−EF )/kT +ND, (20)

from which we can solve for EF . Once EF is found, it is straightforward to calculate n and p. For
example, in the case of silicon, assuming ND = 1× 1015cm−3, we can calculate EF −Ev = 0.898
eV. Since the band gap is 1.12eV, we can verify that this level is higher than the mid-level of
the intrinsic (undoped) case. We can also verify that (Ec − EF ) /kT = 8.6 and (EF − Ev) /kT =
34.7 which are sufficiently large to justify the approximation made in the Fermi function. The
resulting carrier densities are n = 1 × 1015cm−3 and p = 1.52 × 104cm−3. In other words, the
electron concentration is nearly the same as the donor density.

Figure 5: Density of States and Fermi distribution for n-type (left), and p-type (right) semicon-
ductor.

Similarly, p-type semiconductors are created by adding acceptor atoms. These are atoms with a
vacant energy level close to the valence band. In silicon, these are typically from group III, such
as boron or aluminum. This will result in nearly all of those vacant acceptor states being filled
by electrons in the valence bands, resulting in the same number of vacancies in the valence
band. If NA is the acceptor concentration, there will be nearly NA number of vacancies (holes)
in the valence band.

The equations corresponding to (14) and (19) are:

p = n+N−
A , (21)

and ∫ Ev

−∞

√
2m

3/2
v

π2�h
3 (Ev − E)

1/2

(1− 1

e((E−EF )/kT ) + 1

)
dE =

∫ ∞

Ec

√
2m

3/2
c

π2�h
3 (E − Ec)

1/2

( 1

e((E−EF )/kT + 1

)
dE +NA

(
1

e((EA−EF )/kT ) + 1

)
(22)
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which, assuming EF is sufficiently far from the band edges and EA, can be simplified to

4
√
2

h3
(πmvkT )

3/2
e(Ev−EF )/kT =

4
√
2

h3
(πmckT )

3/2
e(EF−Ec)/kT +NA. (23)

For example, in silicon, assuming NA = 1×1015cm−3 and EA−Ev = 0.044eV (for boron doping),
we can calculate EF − Ev = 0.254 eV, which is lower than the intrinsic level. The carrier den-
sities are p = 1 × 1015cm−3 and p = 1.52 × 104cm−3. Just like with the donor doping, the hole
concentration in this case is almost equal to the acceptor density. The values for (Ec − EF ) /kT
(EF − Ev) /kT are 33.5 and 9.8, respectively, which satisfy the requirement for the approxima-
tion made in the Fermi function.

Since we define the intrinsic Fermi level as Ei, substituting equation (12) into (7) (and equation
(12) into (11)) we can get an approximate relationship between the Fermi level and the carrier
concentration in reference to the intrinsic condition. These expressions are applicable to doped
semiconductors or any semiconductors under carrier injection:

n = nie
(EF−Ei)/kT (24)

p = nie
(Ei−EF )/kT . (25)

We can also reverse equations (24) and (25) and express the Fermi level in reference to the
carrrier concentrations:

EF = Ei + kT ln
(

n

ni

)
(26)

EF = Ei − kT ln
(

p

ni

)
. (27)

From the examples and calculations discussed above, we can see that EF has to increase in an
n-type semiconductor. For lightly doped n-type semiconductors, the Fermi level will be slightly
above the midpoint of the bandgap. For heavily doped n-type semiconductors, the Fermi level
can be higher. Similarly, for p-type semiconductors, the Fermi level will be below the intrinsic
level. However, we need to be cautious about the approximation we made for the Fermi func-
tion; i.e., that the Fermi level EF is far from the band edges and the dopant energy levels. This
approximation may break down at high levels of doping concentrations, and we may have to
revert back to the original Fermi functions without that approximation (equations (19) and (22)).

Mass Action Effect

As stated earlier, equation (13) can also be obtained by taking the product of n and p from equa-
tions (7) and (11) and then taking the square root. This product np also exhibits an interesting
aspect: it is independent of EF . This is an important observation because what it means is
that np is a constant regardless of whether the material is doped or not. This is known as the
mass action law. Therefore, if we know the value of n, we can evaluate the value of p, and vice
versa. If a semiconductor is doped with a donor concentration of ND, the electron concentra-
tion will be n ≈ ND, and the hole concentration will be p = n2

i /n. If GaAs is doped with a donor
concentration of 1 × 1015cm−3, we can get an electron concentration of n ≈ 1 × 1015cm−3 and
p = n2

i /n =
(
2.1×106

)2
/
(
1× 1015

)
= 4 × 10−3cm−3. The dominant carrier type is known as

majority carriers, and the other is known as minority carriers. In this example, electrons are the
majority carriers, and holes are the minority carriers.
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Conductivity and Resistivity

In a semiconductor, both electrons and holes contribute to current flow. The conductivity can
be written as:

σ = q (µnn+ µpp) , (28)

where µn is the mobility of electrons in the conduction band, and µp is the mobility of holes
in the valence band. For Si, µn = 1400 cm2V·s and µp = 450 cm2V·s. From this, we can get
the conductivity of intrinsic silicon as 4.4 × 10−6 S/cm. Alternatively, we can also express it as
resistivity, which is ρ = 1/σ = 225 kΩ·cm. Similarly, the resistivity of intrinsic GaAs is 334 MΩ·cm.
As stated earlier, these resistivities are extremely unlikely scenarios because it is not easy to
produce silicon or GaAs with impurity concentrations to that level of purity. Hence, commonly
produced silicon substrates, even when undoped, have resistivities on the order ρ ≈ 1 kΩ·cm
due to unintentional impurities.

When doped, these semiconductors will have much smaller resistivity values. For example, GaAs
doped with a donor concentration of 1× 1015cm−3 will have a resistivity of 4.4 Ω·cm.
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Homework 2
1. Calculate the intrinsic carrier concentration of silicon at room temperature using equation

(13). Look up the relevant material parameters from http://www.matprop.ru.
Run this code.
import k o t l i n . math .*
//Andrew Sarangan

fun main ( ) {
va l m0 = 9 . 1 e−31
val q = 1 .602 e−19
val h = 6.62607004e−34
val k = 1.38064852e−23
val mc = 0.36*m0
val mv = 0.81*m0
val Eg = 1 . 1 2 * q
val T = 300.0
val ni = ( 4 . 0 * 2 . 0 . pow ( 0 . 5 ) /h . pow ( 3 ) ) * ( PI*k*T ) . pow ( 1 . 5 ) * (mc*mv) . pow ( 0 . 7 5 ) *exp(−Eg
/ ( 2 . 0* k*T ) )
p r i n t l n (”%.2 e ” . format ( ni /1 .0 e6 ) )

}

> >3.90e+09

2. Using equation (20), solve for EF when the the donor doping concentration is 1 × 1017

cm−3 in silicon. Then find the corresponding hole concentration. Verify the validity of the
approximation made in simplifying the Fermi function.
Run this code.
import k o t l i n . math .*
//Andrew Sarangan

fun NewtonRaphson ( f : ( input : Double ) −> Double , i n i t i a l X : Double ) : Double {
val dx = i n i t i a l X *1 .0 e−10
var x1 = i n i t i a l X
var fprime : Double
var x2 : Double
var d i f f : Double
do {

fprime = ( f ( x1 ) − f ( x1−dx ) ) /dx
x2 = x1 − f ( x1 ) / fprime

d i f f = abs ( ( x2−x1 ) / x1 )
x1 = x2

} while ( d i f f > 1 . 0 e−12)
return x1

}

fun main ( ) {
va l m0 = 9 . 1 e−31
val q = 1 .602 e−19
val h = 6.62607004e−34
val k = 1.38064852e−23
val mc = 0.36*m0
val mv = 0.81*m0
val Eg = 1 . 1 2 * q
val T = 300.0
val Ev = 0.0
val Ec = Ev+Eg
val Nd = 1 . 0 e17 *1 .0 e6
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fun n ( Ef : Double ) = 4 . 0 * 2 . 0 . pow ( 0 . 5 ) /h . pow ( 3 ) * ( PI*mc*k*T ) . pow ( 1 . 5 ) *exp ( ( Ef−Ec ) / ( k
*T ) )
fun p ( Ef : Double ) = 4 . 0 * 2 . 0 . pow ( 0 . 5 ) /h . pow ( 3 ) * ( PI*mv*k*T ) . pow ( 1 . 5 ) *exp ( ( Ev−Ef ) / ( k
*T ) )
fun fn ( Ef : Double ) = n ( Ef ) − p ( Ef ) − Nd

val Ef = NewtonRaphson ( ( : : fn ) , 0 .9*q )

p r i n t l n ( ” Fermi Level ( Ef−Ev ) = $ {”%.3 f ” . format ( Ef /q ) } eV ” )
p r i n t l n ( ” n = $ {”%.2 e ” . format ( n ( Ef ) *1 .0 e−6) } /cm3 ” )
p r i n t l n ( ” p = $ {”%.2 e ” . format ( p ( Ef ) *1 .0 e−6) } /cm3 ” )
p r i n t l n ( ” ( Ec−Ef ) /kT = $ { ”% .1 f ” . format ( ( Ec−Ef ) / ( k*T ) ) } ” )
p r i n t l n ( ” ( Ef−Ev ) /kT = $ { ”% .1 f ” . format ( ( Ef−Ev ) /( k*T ) ) } ” )

}

>>Fermi Level ( Ef−Ev ) = 1 . 0 1 7 eV
>>n = 1 .00 e +17 /cm3
>>p = 1 . 5 2 e+02 /cm3
> >(Ec−Ef ) /kT = 4 .0
> >( Ef−Ev ) /kT = 39 .3

The value of e4 is 54.4, so the approximation of dropping the 1 in the Fermi expression is
still valid.

3. Consider a donor doping density of 1019cm−3 in silicon. Using equations (20) and (23)
calculate EF , n and p. Verify the validity of the approximations made in the Fermi func-
tion. If necessary, repeat the calculations with the full integrals without the approximation
(equations (19) and (22)).
Run this code
import k o t l i n . math .*
//Andrew Sarangan

fun NewtonRaphson ( f : ( input : Double ) −> Double , i n i t i a l X : Double ) : Double {
val dx = i n i t i a l X *1 .0 e−10
var x1 = i n i t i a l X
var fprime : Double
var x2 : Double
var d i f f : Double
do {

fprime = ( f ( x1 ) − f ( x1−dx ) ) /dx
x2 = x1 − f ( x1 ) / fprime

d i f f = abs ( ( x2−x1 ) / x1 )
x1 = x2

} while ( d i f f > 1 . 0 e−12)
return x1

}

fun main ( ) {
va l m0 = 9 . 1 e−31
val q = 1 .602 e−19
val h = 6.62607004e−34
val k = 1.38064852e−23
val mc = 0.36*m0
val mv = 0.81*m0
val Eg = 1 . 1 2 * q
val T = 300.0
val Ev = 0.0
val Ec = Ev+Eg
val Nd = 1 . 0 e19 *1 .0 e6

fun n ( Ef : Double ) = 4 . 0 * 2 . 0 . pow ( 0 . 5 ) /h . pow ( 3 ) * ( PI*mc*k*T ) . pow ( 1 . 5 ) *exp ( ( Ef−Ec ) / ( k
*T ) )

26

https://pl.kotl.in/Tab7U3Z3_


Andrew Sarangan

fun p ( Ef : Double ) = 4 . 0 * 2 . 0 . pow ( 0 . 5 ) /h . pow ( 3 ) * ( PI*mv*k*T ) . pow ( 1 . 5 ) *exp ( ( Ev−Ef ) / ( k
*T ) )
fun fn ( Ef : Double ) = n ( Ef ) − p ( Ef ) − Nd

val Ef = NewtonRaphson ( ( : : fn ) , 1 . 1 * q )

p r i n t l n ( ” Fermi Level ( Ef−Ev ) = $ {”%.3 f ” . format ( Ef /q ) } eV ” )
p r i n t l n ( ” n = $ {”%.2 e ” . format ( n ( Ef ) *1 .0 e−6) } /cm3 ” )
p r i n t l n ( ” p = $ {”%.2 e ” . format ( p ( Ef ) *1 .0 e−6) } /cm3 ” )
p r i n t l n ( ” ( Ec−Ef ) /kT = $ { ”% .1 f ” . format ( ( Ec−Ef ) / ( k*T ) ) } ” )
p r i n t l n ( ” ( Ef−Ev ) /kT = $ { ”% .1 f ” . format ( ( Ef−Ev ) /( k*T ) ) } ” )

}

>>Fermi Level ( Ef−Ev ) = 1 . 1 3 6 eV
>>n = 1 .00 e+19 /cm3
>>p = 1 . 5 2 e+00 /cm3
> >(Ec−Ef ) /kT = −0.6
> >( Ef−Ev ) /kT = 43 .9

The value of e−0.6 is 0.54, so dropping the 1 in the Fermi expression is not a valid approxi-
mation. We need to repeat the calculation with the full integrals.
Run this code

1 import k o t l i n . math .*
2 //Andrew Sarangan
3

4 fun NewtonRaphson ( f : ( input : Double ) −> Double , i n i t i a l X : Double ) : Double {
5 val dx = i n i t i a l X *1 .0 e−10
6 var x1 = i n i t i a l X
7 var fprime : Double
8 var x2 : Double
9 var d i f f : Double

10 do {
11 fprime = ( f ( x1 ) − f ( x1−dx ) ) /dx
12 x2 = x1 − f ( x1 ) / fprime
13 d i f f = abs ( ( x2−x1 ) / x1 )
14 x1 = x2
15 } while ( d i f f > 1 . 0 e−12)
16 return x1
17 }
18

19 fun main ( ) {
20 val m0 = 9 . 1 e−31
21 val q = 1 .602 e−19
22 val h = 6.62607004e−34
23 val hbar = h / ( 2 . 0* PI )
24 val k = 1.38064852e−23
25 val mc = 0.36*m0
26 val mv = 0.81*m0
27 val Eg = 1 . 1 2 * q
28 val T = 300.0
29 val Ev = 0.0
30 val Ec = Ev+Eg
31 val Nd = 1 . 0 e19 *1 .0 e6
32 val Ed = Ec − 0.046*q
33

34 fun n ( Ef : Double ) : Double {
35 val dE = 1 . 0 e−5*q
36 val EcUpper = 1 .0*q
37 return DoubleArray ( ( EcUpper/dE ) . t o I n t ( ) ) { Ec+ i t *dE } . map{
38 2 . 0 . pow ( 0 . 5 ) *mc . pow ( 1 . 5 ) / ( PI . pow ( 2 ) *hbar . pow ( 3 ) ) * ( i t−Ec ) . pow ( 0 . 5 ) / (

exp ( ( i t−Ef ) / ( k*T ) ) + 1 . 0 ) *dE } . sum ( )
39 }
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40 fun p ( Ef : Double ) : Double {
41 val dE = 1 . 0 e−5*q
42 val EvLower = 1 .0*q
43 return DoubleArray ( ( EvLower/dE ) . t o I n t ( ) ) { Ev−i t *dE } . map{
44 2 . 0 . pow ( 0 . 5 ) *mv. pow ( 1 . 5 ) / ( PI . pow ( 2 ) *hbar . pow ( 3 ) ) * ( Ev−i t ) . pow ( 0 . 5 )

* ( exp ( ( i t−Ef ) / ( k*T ) ) / ( exp ( ( i t−Ef ) / ( k*T ) ) + 1 . 0 ) ) *dE } . sum ( )
45 }
46 fun NdPlus ( Ef : Double ) = Nd* ( 1 . 0 − 1 . 0 / ( exp ( ( Ed−Ef ) / ( k*T ) ) + 1 . 0 ) )
47 fun fn ( Ef : Double ) = n ( Ef ) − p ( Ef ) − NdPlus ( Ef )
48

49 val Ef = NewtonRaphson ( ( : : fn ) , 1 .0*q )
50 p r i n t l n ( ” Fermi Level ( Ef−Ev ) = $ {”%.3 f ” . format ( Ef /q ) } eV ” )
51 p r i n t l n ( ” n = $ {”%.2 e ” . format ( n ( Ef ) *1 .0 e−6) } /cm3 ” )
52 p r i n t l n ( ” p = $ {”%.2 e ” . format ( p ( Ef ) *1 .0 e−6) } /cm3 ” )
53 }
54

55 >>Fermi Level ( Ef−Ev ) = 1 . 1 0 3 eV
56 >>n = 2 .43 e+18 /cm3
57 >>p = 5 .34 e+00 /cm3

Using the full integral, we can find that only 25% of the donors are ionized.

4. Plot the conductivity vs temperature for an undoped silicon. Compare this with a com-
mercial thermistor, such as for example:
https://www.vishay.com/docs/29050/ntclg100.pdf

5. Commercially manufactured silicon wafers have a number of different specifications, one
of which is its resistivity. 3-inch silicon wafers with a resistivity greater than 20kΩ·cm
are significantly more expensive than those with resistivity values smaller than 10Ω·cm.
Explain the reasons for this.

6. Calculate the Fermi level of an n-type GaAs substrate that has been doped with 1017cm−3

relative to either of the band edges (Ec or Ev). Provide your answers in eV.
Run this code
import k o t l i n . math .*
//Andrew Sarangan

fun main ( ) {
va l m0 = 9 . 1 e−31
val q = 1 .602 e−19
val h = 6.62607004e−34
val k = 1.38064852e−23
val mc = 0.063*m0
val T = 300.0
val n = 1 . 0 e17 *1 .0 e6
p r i n t l n ( ” Ef−Ec = %.4 f ” . format (

ln ( n / ( 4 . 0 * 2 . 0 . pow ( 0 . 5 ) /h . pow ( 3 ) * ( PI*mc*k*T ) . pow ( 1 . 5 ) ) ) * ( k*T ) /q ) )
}

>>Ef−Ec = −0.0356

7. Look up the bandgaps, cut-on wavelengths, and intrinsic carrier concentrations of InSb, Si,
GaAs and GaN. Assume room temperature for all cases. Discuss the trends in these values.
InSb = 0 . 1 7 eV Lambda = 7 . 2 9um ( ni = 2e16 )
S i = 1 . 1 2 eV Lambda = 1 . 1 0 7um ( ni = 1 e10 )
GaAs = 1 . 4 2 eV Lambda= 0.873um ( ni = 2e6 )
GaN = 3 . 2 eV , Lambda = 0.387um ( ni = 1e−10)
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8. A photocell consists of a thin film of CdS with an interdigitated electrode structure. The
resistivity of CdS (with no illumination) is 103Ω−cm. The film thickness 10µm. Referring to
Fig 8, the gap between the electrodes is 1 mm, and the length of the interdigitated trace
is 1 cm. Calculate the dark resistance of this photocell.

Figure 6: CdS Photocell

Run this code
import k o t l i n . math .*
//Andrew Sarangan

fun main ( ) {

va l rho = 1 . 0 e3 //Ohm−cm
val thickness = 10 .0 e−4 //cm
val distance = 0 . 1 //cm
val width = 1 . 0 //cm
val R : Double = rho*distance /( thickness *width )
p r i n t l n ( ” $ { ”% . 1 f ” . format ( R/1000.0) } kOhms ” )

}

> >100.0 kOhms
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Basic Theory of PN Junction Diodes

Current Flow

Before describing diodes, we need to explain the mechanisms of current flow. The ordinary
current flow that we know from everyday experience is the drift current. This current is produced
by applying a voltage across a conductor. The current density J (in Amps/cm2) will be

Jdrift = qµnnE (1)

where µn is the electron mobility, n is the electron density, E is the applied electric field (which
is voltage divided by distance) and q is the unit charge of an electron (assumed to be a positive
value). This is the current flow that we are all familiar with through metal wires such as copper
and aluminum as well as through uniformly doped semiconductors.

The second mechanism of current flow is diffusion current. This is less common in everyday
experience, but it is an important mechanism in diodes. This current is produced when there
is a concentration gradient of electrons or holes. The electrons (or holes) will flow from high
concentration to low concentration through a diffusive process without the assistance of an
electric field. The current density J (in Amps/cm2) due to the diffusion of electrons can be
written as

Jn,diff = qDn
dn

dx
. (2)

Similarly, the current due to hole diffusion can be written as

Jp,diff = −qDp
dp

dx
. (3)

µ and D are actually related, which should not be surprising because both are related to the
transport of these carriers. This relationship is:

D = µkT/q. (4)

Diffusion current does not typically exist in a metal wire because the electron concentration is
nearly the same everywhere inside the metal. We encounter diffusion current only when there
are large gradient in concentration. This can occur at the interface between two metals, or more
importantly, at the interface between an n-type and p-type semiconductor.

Built-in Voltage of a Junction Diode

If an n-type region and a p-type region are adjacent in the same semiconductor crystal, there
will be a large concentration gradient for electrons and holes across the junction. In the n-
type region, the electron concentration will be equal to ND, and in the p-side the electron
concentration will be equal to n2

i /NA. Substituting typical values of NA and ND of 1016 cm−3,
we can see that the electron concentration will vary from 1016 on the n-side to 104 on the p-side.
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This is a difference of 12 orders of magnitude. This concentration difference will force diffusion
current to flow. As electrons leave the n-side and move to the p-side, it will make the n-side of
the junction more positive and p-side of the junction more negative. As holes leave the p-side
and move to the n-side, that too will leave the p-side more negative and n-side more positive.
The net result is that an internal electric field will build which points from the n-side (positively
charged) to the p-side (negatively charged). The associated voltage difference is called the
built-in potential. This electric field will oppose the flow of diffusion current. For this reason,
the built-in potential is also called a barrier voltage. The charges that create this potential
difference reside within a narrow region on either side of the junction, and this is known as the
space-charge region.

The built-in voltage can be calculated by setting the drift and diffusion current across the junc-
tion to be equal and opposite to each other.

J = Jdrift + Jdiff = 0 (5)

= qµnnE + qDn
dn

dx
= 0. (6)

From this, we can get an expression forE, which we can also write as−dV
dx where V is the voltage:

dV

dx
=

Dn

µn

dn/dx

n
. (7)

Since we know that Dn

µn
= kT

q , which we can represent as a voltage Vt, equation (7) becomes

dV = Vt
dn

n
. (8)

This function can be integrated from one side the junction to the other side where the electron
concentration goes from n2

i /NA (minority carriers) to ND (majority carriers), such as∫ Vbi

0

dV =

∫ ND

n2
i /NA

Vt
dn

n
(9)

resulting in:

Vbi = Vt ln
(
NDNA

n2
i

)
. (10)

Vbi is known as the built-in voltage of a junction diode. The internal voltage builds up to prevent
the continuous flow of carriers from one side of the junction to the other. For example, if NA

and ND are both equal to 1016cm−3, we can get Vbi = 0.70V for silicon, which is the frequently
used built-in voltage for silicon diodes.

Figure 1: Potential band diagram of a PN junc-
tion under zero bias.

The built-in potential, therefore, raises the
potential of the n-side compared to the p-
side. Since conventional definition of cur-
rent and potential is with respect to positive
charges, we can also view the electron poten-
tial as being higher on the p-side compared
to the n-side, as shown in Fig 1. The poten-
tial profile can be viewed as a barrier that
prevents the carriers from spilling over to the
other side (or as a levee that prevents water
from flooding the other side). One important
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consequence worth noting is that the Fermi level will be the same on both sides of the junc-
tion. This is a necessary condition for equilibrium. It represents the condition that the average
electron energy is the same everywhere in the structure to represent no net movement of en-
ergy. Therefore, we could have also derived the built-in voltage expression by simply taking the
difference between the Fermi levels, as

qVbi = EFN − EFP (11)

whereEFN andEFP are the n-type and p-type Fermi levels prior to the formation of the junction.
These can be calculated from the doping levels using equations (26) and (27) from the previous
chapter.

Figure 2: Carrier concentration profile under
zero bias.

Another point worth noting is that the Fermi
level passes through the intrinsic point (mid-
way inside the bandgap) at the junction. This
is known as the metallurgical junction. The
carrier concentrations will be at the intrinsic
semiconductor value ni at this point.

We can sketch the carrier profiles for both
electrons and holes from one side of the junc-
tion to the other side. Clearly, electron con-
centration would start at a value of ND on the
n-side and decline to a value of n2

i /NA on the
p-side. The hole concentration would start at
a value of NA on the p-side and decline to
n2
i /ND on the n-side. This is shown in Figure

2.

Forward Bias

When no external voltage is applied, the built-in potential barrier will prevent the diffusion cur-
rent from flowing across the junction. However, we can apply a voltage to reduce the barrier
voltage, which will then cause a diffusion current to flow. Since the built-in voltage is a result
of the n-side of the junction being positively charged and the p-side of the junction being neg-
atively charged, the built-in voltage can be reduced by applying an external positive voltage to
the p-side and a negative voltage to the n-side. This is known as the forward bias condition of
the diode. This will cause an imbalance in the drift and diffusion currents, and will cause a net
current to flow in the direction of the diffusion current.

Figure 3: Potential band diagram of a PN junc-
tion under forward bias.

This condition can be represented as in Fig 3,
where the potential barrier is now insufficient
to prevent the carriers from spilling over to
the other side. Using the analogy of a levee,
this is like reducing the height of the levee
and allowing some of the flood water to flow.
There will be a net movement of energy from
the n-side to the p-side, and the Fermi levels
will also be different on either side of the PN
junction. EFN will be higher than EFP , be-
cause the average energy of electrons on the
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n-side will be higher than the p-side. The difference in the Fermi levels is equal to applied
voltage:

EFN − EFP = qVa. (12)

We can sketch the carrier profiles for both electrons and holes from one side of the junction to
the other side. Similar to the zero bias, the electron concentration would start at a value of ND

on the n-side and decline to a value of n2
i /NA on the p-side. However, at the edge of the space

charge region, the electron concentration will be elevated as illustrated in Figure 4. Similarly,
the hole concentration would start at a value of NA on the p-side and decline to n2

i /ND on the
n-side, except it will be elevated at the edge of the other side of the space charge region.

Looking at equation (10), we can also write it as

n2
i

NA
= NDe−Vbi/Vt . (13)

Figure 4: Potential band diagram of a PN junc-
tion under forward bias. The solid lines repre-
sent zero bias, and the dashed lines represent
forward bias.

The left side of this equation is the minority
carrier concentration in the p-side. We will
represent it more generically as np (where the
letters stand for electron concentration in the
p-side). At zero bias, np will be equal to n2

i

NA
.

Under forward bias, np at the left edge of the
space charge region will be higher than n2

i

NA
.

We will make the assumption that equation
(13) still holds even at forward bias (hence the
quasi-steady-state assumption). Since the
net voltage across the junction is now Vbi−Va,
the minority carrier concentration at the edge
of the space charge region on the p-side be-
comes

np = NDe−(Vbi−Va)/Vt . (14)
Combining equation (14) with (13) results in:

np =
n2
i

NA
eVa/Vt . (15)

In other words, the minority electron concentration at the p-side of the junction will rise by a
factor of eVa/Vt . This is an excess electron concentration above the steady state value of n2

i

NA
.

Similarly, on the n-side, there will be an excess of hole concentration:

pn =
n2
i

ND
eVa/Vt . (16)

These excess carriers will result in an excess recombination and excess diffusion current on
both sides of the junction. The derivation is given in the next section, where we have shown
that the diffusion length can be expressed as

Ln =
√

Dnτ (17)
Lp =

√
Dpτ , (18)

where τ is the electron-hole recombination lifetime and Dn and Dp are the electron and hole
diffusion coefficients, respectively. The diffusion length can be interpreted as the average dis-
tance a carrier moves before it recombines and annihilates itself. The carrier profiles will exhibit
a decay such as e−x/Lp on the N-side and ex/Ln on the P-side. This is illustrated in Figure 5.
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Figure 5: Minority carrier profiles under forward bias when the contacts are far from the junction
(long diode model)

Figure 6: Minority carrier profiles under forward bias when the contacts are close to the junction
(short diode approximation)

If the distance between the edge of the space charge region and the electrical contacts is much
smaller than the diffusion length (known as the short-diode approximation), the carrier profile
can be assumed to be linear, declining from np at the edge of the space charge region to n2

i

NA
at

the contact (for minority carrier electrons in the p-side). This is shown in Fig 6.

In both cases, the sum of the diffusion currents on both sides of the junction can be expressed
as (derivation left as an exercise)

J = Jn + Jp (19)

= q
Dn

Ln

(
n2
i

NA
eVa/Vt − n2

i

NA

)
+ q

Dp

Lp

(
n2
i

ND
eVa/Vt − n2

i

ND

)
(20)

= q

(
Dn

Ln

n2
i

NA
+

Dp

Lp

n2
i

ND

)(
eVa/Vt − 1

)
. (21)
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In the case of the short-diode, the equation becomes

J = q

(
Dn

Wn

n2
i

NA
+

Dp

Wp

n2
i

ND

)(
eVa/Vt − 1

)
. (22)

where Wn and Wp are the distance between the edge of the space charge region and the contact
in the n-type and p-type regions, respectively.

It is also possible to have the short-diode on one side the junction and a long-diode on the
other side. Similarly, it is also possible to have one of the terms much smaller than the other.
For example, consider a diode where NA >> ND. In this case, the long-diode model becomes:

J = q
Dp

Lp

n2
i

ND

(
eVa/Vt − 1

)
. (23)

If the cross-sectional area of the diode is A, this becomes

I = Aq
Dp

Lp

n2
i

ND

(
eVa/Vt − 1

)
(24)

I = Is

(
eVa/Vt − 1

)
, (25)

which is the well-known I-V curve of a classical diode. The overall I-V curve of a diode is depicted
in Fig 7.

Figure 7: Current-Voltage (I-V) curve of a typical diode

We can see that the current on the reverse bias side is practically zero compared to the current
on the forward bias side. Despite its small value, the reverse current still plays a major role
in devices such as photodiodes and avalanche diodes. Furthermore, in practical diodes, the
reverse current will not remain constant at−Is, but will actually increase with increasing reverse
bias voltage. These small but important effects cannot be discerned from the linear plot shown
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Figure 8: Current-Voltage (I-V) curve of an ideal diode and a real diode shown on a log scale

in Fig 7. A better way is to depict the current on a log scale (after taking its magnitude, to account
for the negative current in the reverse direction). This is shown in Fig 8.

As an important side note, we can state that majority carriers move primarily by drift rather than
diffusion. This is because even a tiny electric field can cause an appreciable flow of majority
carriers. On the other hand, the transport of minority carriers is by diffusion. On Fig 5, we can
see that the current (which is the sloped of the carrier profile) will decline from the edge of
the space charge region. This occurs due to recombination. As minority carriers recombine,
they will cause the majority carriers to move in the opposite direction to preserve the total
current. In the long-diode model, the minority carrier profile by the time it reaches the contact
is nearly flat. Therefore, the diffusion current will be zero, and all of the current will be carried
by drift. This means, the electric field cannot be exactly zero outside the space charge region. In
the integration of equation (8) we assumed the field was zero outside the space charge region.
While this is strictly true under zero-bias condition, under forward bias, a small electric field
has to exist outside the space charge region to support the drift current. Similarly, the injection
of majority carriers from the incident side of the junction also occurs by drift transport. The
presence of this field can be ignored in most cases, but it will become important in some cases,
such as in photodiodes as we will see later.
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Reverse bias

Figure 9: Potential band diagram of a PN junc-
tion under reverse bias.

Whereas a forward bias caused a reduction
in the potential barrier, a reverse bias will
increase the potential barrier as depicted in
Fig 9. From equation (21) or (22), we can see
that when Va is negative, the current will re-
verse direction with a much smaller magni-
tude. This effect can be explained as follows:

Using the analogy of a levee, applying a re-
verse bias is like raising the height of the bar-
rier. Clearly, raising the barrier should only
increase the blocking effect of the barrier,
and should not cause a reverse flow. How-
ever, this would be true only if the top of the barrier were absent of any carriers. There is , in
fact, small number of carriers at the top of the barrier (minority carriers). When the barrier is
raised, these carriers will roll down the barrier to produce a reverse flow. This will result in a
depression in the minority carrier concentration at the top of the barrier. The minority carri-
ers further away from this depression will diffuse to fill in the depression. This is how reverse
current flows in a diode.

If we return to equations (15) and (16), as Va becomes negative, the minority carrier densities at
the edge of the space charge region will decline below their thermal equilibrium values (whereas
in forward bias they increased above their thermal equilibrium values). In response to this
depression of carrier density, minority carriers from further away will diffuse in to compensate
for this depression. Given the small carrier densities, this carrier gradient will be small, and
the resulting flow will also be small. The carrier profile corresponding to the reverse bias is
illustrated in Figure 10. Since the slope of the carrier density at the edge of the space charge
region is opposite that of the forward bias case, the current will also reverse direction.

Figure 10: Minority carrier profiles under reverse bias in a long diode approximation

Additionally, the depression in carrier density below the thermal equilibrium value will cause
the thermally generated carriers to become larger than the recombination rate, resulting in
a net production of carriers. Whereas in a forward bias the injected excess minority carriers
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recombined to become majority carriers, under reverse bias the drawn minority carriers will
be supplied by thermal generation. Since thermal generation creates an electron and a hole
simultaneously, the effect is the same as before - the minority carriers become majority carriers,
except in this case it is due to thermal generation.

Space Charge Width

The width of the space charge region extends on both sides of the metallurgical junction. There
is equal number of charges in the space charge region on either side of the junction. Since the
doping density is NA and ND for the p- and n-side, we can get an expression for the width of
this region on either side of the junction. These are:

xn =

√
2ϵs
q

NA

ND

1

NA +ND
(Vbi − Va) (26)

xp =

√
2ϵs
q

ND

NA

1

NA +ND
(Vbi − Va), (27)

where ϵs is the static permittivity of the semiconductor material. In these expressions, we have
assumed Va to be forward bias voltage. Therefore, under forward bias the space charge width
will get smaller. Under reverse bias the space charge width will get larger.

Carrier Diffusion and Recombination

Equations (17) and (18) actually comes from the carrier diffusion equation, which is similar to
the heat diffusion equation. This can be written as:

Dn
∂2n

∂x2
= −n

τ
. (28)

This equation basically states that any discontinuity in the diffusion current is due to the carriers
lost due to recombination. A similar equation can be written for the hole diffusion:

Dp
∂2p

∂x2
= −p

τ
. (29)

The solution of these equations, assuming the boundary (in this case, the boundary is the elec-
trical contacts) is at an infinite distance away, becomes:

n = Ae−x/
√
Dnτ + C (30)

p = Be−x/
√

Dpτ +D (31)

Since we know that the minority carrier concentrations at the edge of the junction was np on
the p-side and pn on the n-side, and the minority carrier concentrations far from the junction
are n2

i /NA and n2
i /ND we can write these as

n = npe
−x/

√
Dnτ +

n2
i

NA
(32)

p = pne
−x/

√
Dpτ +

n2
i

ND
, (33)
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which are the same carrier profiles assumed in the long-diode approximation. For the case
where the contacts are much closer to the junction, we can also show that the carrier profiles
will have a linear profile (short diode approximation).

In equations (32) and (33), the minority carrier profiles decay to from np to n2
i /NA. As a result, the

diffusion current, which is the derivative of the carrier profile, also decays from its highest value
at the edge of the junction (which will be qDn

Ln
np on the p-side and q

Dp

Lp
pn on the n-side) to zero.

This decay is due to carrier recombination. This recombination, which occurs on both sides of
the junction can emit a photon or phonon. A photon will emit electromagnetic radiation, while
a phonon will increase the lattice vibrations, and hence the temperature. The recombination
lifetime due to photon emission is called the radiative lifetime, and the recombination lifetime
due to phonon emission is called the non-radiative lifetime. We can write this as

R = Rnr +Rr (34)
np

τ
=

np

τnr
+

np

τr
(35)

where τr and τnr are the radiative and non-radiative lifetimes, respectively.

In many applications, we are interested in radiative processes more than non-radiative pro-
cesses. This can be quantified by taking the ratio between the two rates. This is often expressed
as:

ηi =
Rr

R
=

τnr
τnr + τr

(36)

where ηi is known as the internal quantum efficiency, and is an intrinsic property of a material.
Its value depends on the type of bandgap (direct or indirect), as well as the quality of the crystal
and doping etc..

In silicon, τnr ≈ 100µs, and τr ≈ 1s, resulting in an internal quantum efficiency of ηi = 10−4.
Silicon is an indirect bandgap material, therefore, it is not very likely to emit a photon during a
recombination event. In GaAs, τnr = 10ns and τr = 5ns, which results in an internal quantum
efficiency of ηi = 0.66.

As depicted in Fig 5, the recombination takes place on either side of the junction. Additionally,
from 4 we can see that both the electron and hole concentration profiles inside the space charge
region are higher than their thermal equilibrium values. This will result in recombination inside
the space charge region as well. As a result, we can say that recombination occurs within a
two-dimensional plane whose thickness is xn + xp + Ln + Lp.
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Homework 3
1. This question pertains to an InSb diode.

• Using equation (13) from the previous chapter calculate the intrinsic carrier concen-
tration of InSb at 77K and 300K.

• Using the above values, calculate the built-in voltage of an InSb diode at 77K and
300K, using a p-side doping of 1016cm−3 and n-side doping of 1017cm−3.

Run this code
import k o t l i n . math .*
//Andrew Sarangan

fun main ( ) {
va l NA = 1 . 0 e16
val ND = 1 . 0 e17
val mc = 0.014
val mv = 0.48
val m0 = 9 . 1 e−31
val Eg = 0 . 1 7
val k = 1 . 3 8 e−23
val h = 6.602e−34
val q = 1 .602 e−19

fun niVbi ( T : Double ) : Pair <Double , Double > {
val ni = 4 . 0 * 2 . 0 .pow ( 0 . 5 ) /h . pow ( 3 ) * ( PI*k*T ) . pow ( 1 . 5 ) * (mc*mv*m0*m0) .

pow ( 0 . 7 5 ) *exp(−Eg / ( 2 . 0* k*T/q ) ) / 1 . 0 e6
val Vt = k*T/q
val Vbi = Vt* ln (NA*ND/ ni . pow ( 2 ) )
return Pair <Double , Double > ( ni , Vbi )

}

n iVbi ( 3 0 0 . 0 ) . l e t {
p r i n t l n ( ” ni at 300 K = $ {”%.3 e ” . format ( i t . f i r s t ) } ” )
p r i n t l n ( ” Vbi at 300 K = $ {”%.4 f ” . format ( i t . second ) } ” )

}

n iVbi ( 7 7 . 0 ) . l e t {
p r i n t l n ( ” ni at 77 K = $ {”%.3 e ” . format ( i t . f i r s t ) } ” )
p r i n t l n ( ” Vbi at 77 K = $ {”%.4 f ” . format ( i t . second ) } ” )

}
}

>> ni at 300 K = 2 . 2 1 5 e+16
>>Vbi at 300 K = 0.0184
>> ni at 77 K = 2 . 1 0 1 e +11
>>Vbi at 77 K = 0 .1582

2. Consider a silicon photodiode as shown in Figure 11. The diode is fabricated on an n-type
substrate whose resistivity is 1kΩ·cm. The p-side is doped to a concentration of 1017cm−3

to a depth of 3µm. The substrate thickness is 300µm. The diameter of the diode is 250µm.

• Calculate the substrate doping.
• Considering only the ideal effects described in this chapter, calculate the reverse

saturation current Is of this photodiode (which is also known as the dark current).
• Explain why the top contact is shaped as a ring while the bottom contact is shaped

as a disc.
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Figure 11: Silicon photodiode

Run this code
import k o t l i n . math .*
//Andrew Sarangan

fun main ( ) {
va l muN = 1400.0
val q = 1 .602 e−19
val rho = 1 . 0 e3
val ND = 1 . 0 / ( rho*q*muN)
p r i n t l n ( ”N−side doping = $ {”%.3 e ” . format (ND) } ” )

va l Lp = 0 . 7
val Dp = 1 2 . 0
val A = PI * ( 250 .0 e−4/2) . pow ( 2 )
val ni = 1 . 0 e10
val I s = q*A*Dp/Lp* ni . pow ( 2 ) /ND
p r i n t l n ( ” I s = $ {”%.3 e ” . format ( I s ) } Amps ” )

}

>>N−side doping = 4.459 e+12
>> I s = 3 .023 e−14 Amps
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Light Emitting Diodes

Rectifying Diodes vs Light Emitting Diodes

The most widely used property of diodes is its asymmetric electrical conductance. Rectifying
diodes are used to convert AC voltages to DC, Zener diodes used to regulate voltages etc.. Step-
recovery diodes (SRD) are used to generate very short pulses due to the reversal from forward
bias to reverse bias. Schottky barrier diodes (SBD) are formed between a semiconductor (typi-
cally silicon) and a metal, which can allow for a lower turn-on voltage compared to a p-n junction
silicon diode.

A light emitting diode, on the other hand, is specifically designed to emit photons. That means,
it has to be made from a direct bandgap material. Additionally, it is designed to maximize the
recombination current component. It is also designed to extract and transmit the maximum
number of photons from the semiconductor to the outlying regions, and reduce the number of
photons that are re-absorbed or trapped inside the semiconductor chip.

Internal Quantum Efficiency

The internal quantum efficiency ηi is the fraction of recombinations that produce photons:

ηi =
Rr

Rnr +Rr
. (1)

In terms of lifetimes, we can also express it as

ηi =
τnr

τnr + τr
. (2)

The primary factor that determines the internal quantum efficiency is the alignment of the con-
duction and valence band edges. Direct bandgap materials such as GaAs and InP exhibit a large
internal quantum efficiency, in the range of 10%- 90%, while indirect bandgap materials have
extremely small internal quantum efficiency.

Extraction Efficiency

Extraction efficiency ηext is the fraction of emitted photons that emerge out of the LED struc-
ture. The characteristic of spontaneous emission is such that photons are randomly emitted
in all directions. Most semiconductor materials have a high refractive index. As a result, only
a small fraction of these photons will fall within the cone of angles will be able to escape the
semiconductor. Most of the other photons will be trapped inside the semiconductor material
due to total internal reflection, and be eventually absorbed.
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Figure 1: Fraction of photons that escape the
semiconductor.

Assuming a refractive index of 3.5 (which is
typical for GaAs near the band edge), the crit-
ical angle for total internal reflection is θcr =
sin−1 ( 1

3.5

)
= 16.6◦. Therefore, only those

photons that fall within this angle (referred
to as the escape cone) will emerge from GaAs.
All others angles will be internally reflected.

We can estimate the fraction of sponta-
neously emitted photons that fall within this
escape cone. The emitting surface in an
LED is essentially a two-dimensional plane.
Even though each point on the surface emits
isotropically, when these points are evenly distributed on a two-dimensional plane, the over-
all intensity will have an angular dependence of cos θ, where θ is measured from the surface-
normal. This is known as Lambert’s cosine law, and it arises due to the radiance (or brightness)
being equal in all direction. Therefore, the intensity can be written as

I = Io cos θ. (3)

Figure 2: Depiction of the integral in
spherical coordinates of the escape
cone from a semiconductor

Using this assumption, we can calculate the fraction of
photons that fall within the escape cone. Referring to
Fig 2, the integrated power that fall between the normal
direction to the emitting surface and θcr can be written
as an integral in spherical co-ordinates:

Pext =

∫ θcr

0

(2πr sin θ) (rdθ) (Io cos θ)T (θ) , (4)

where T (θ) is the transmission from the semiconductor
to the air, and r is an arbitrary radius. The total emitted
power in all directions can be obtained by taking the
same integral over all angles:

Ptot = 2

∫ π/2

0

(2πr sin θ) (rdθ) (Io cos θ) , (5)

where the factor of 2 is to account for the top and bottom hemispheres. The extraction efficiency
can be obtained by taking the ratio between these two powers. The transmission T (θ) falls
from 1 −

∣∣∣ns−na

ns+na

∣∣∣2 at normal incidence (θ = 0) to zero at the critical angle. Given that θcr is a
relatively small angle, we can approximate the transmission function with an average value Tav .
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Therefore, we can carry out this integral as follows:

ηext =
Pext

Ptot
(6)

=

∫ θcr
0

(2πr sin θ) (rdθ) (Io cos θ)T (θ)

2
∫ π/2

0
(2πr sin θ) (rdθ) (Io cos θ)

(7)

=
Tav

∫ θcr
0

sin θ cos θ dθ

2
∫ π/2

0
sin θ cos θ dθ

(8)

=

1
2 sin2

θ
∣∣∣θcr
0

sin2
θ
∣∣∣π/2
0

Tav (9)

=
1

2

(
n2

n1

)2

︸ ︷︷ ︸
Escape Cone

Tav (10)

where n1 is the refractive index of the LED, and n2 is the refractive index of the exit medium (air).
In this calculation, we have ignored the contribution of absorption in the semiconductor. In
practice, photons have to travel a finite distance from the emission surface to the air interface. A
semiconductor that emits photons will also absorb that same photon. Therefore, the absorption
coefficient must also be considered in the calculation of extraction efficiency. Unfortunately,
this factor cannot be neatly integrated as shown above. It can only be done numerically. For
that reason, we will ignore this absorption factor.

Additionally, we have assumed that all of the photon emitted into the lower hemisphere are
completely lost. This does not always have to be the case. Those photons can be redirected
to the top surface with reflectors. However, the limitation of the escape cone is still valid.
Therefore, at best, we can improve the extraction by a factor of two by redirecting all of the
photons in the lower hemisphere.

Tav is the average transmission coefficient across the semiconductor/air interface within the
escape cone. This can be approximated as one half of the normal incidence transmission:

Tav =
1

2

[
1−

∣∣∣∣n1 − n2

n1 + n2

∣∣∣∣2
]
. (11)

External Quantum Efficiency

The external quantum efficiency can now be calculated by taking the product of the internal
quantum efficiency and the extraction efficiency:

ηe = ηiηext. (12)

For example, if the refractive index of the LED is 3.5, we can calculate ηext = 0.0141. If the
internal quantum efficiency is ηi = 0.5, we can get an external quantum efficiency of 0.7%. In
other words, only 0.7% of the electrons injected into the diode emerge as photons out of the
LED.

Once the external quantum efficiency is known, we can calculate different parameters, such as
responsivity and wall plug efficiency.
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Responsivity

The responsivity of an LED is defined as the optical output power for input current. The units
are in Watts/Amps. We can write the output power as

Po =
I

q
hνηiηext (13)

where hν is the photon energy and I is the diode current. Since the photon energy is equal to
the bandgap energy, Eg , and ηe = ηiηext, we can also write this as

Po = I
Eg

q
ηe. (14)

Figure 3: Light-Current curve of a typical LED

Furthermore, if we define Eg

q as an equivalent
voltage Vg , we can

Po = IVgηe = IR (15)

where the responsivity R is

R = Vgηe. (16)

Using the previous example, assuming GaAs
as the LED material whose bandgap is 1.42eV,
we can get

R = 1.42×0.007 = 0.01W/A or 10mW/A. (17)

The Light-Current curve of an LED is shown in
Fig 3. We can see that the slope of the curve is the responsivity. However, this responsivity will
generally decline at higher current levels due to heating, which arises from a reduction in the
internal quantum efficiency.

Wall Plug Efficiency

The wall plug efficiency is the total electrical power-in vs optical power-out efficiency. The
electrical input power is

Pin = IVa (18)

where Va is the applied voltage to the diode. The output power is

Po = IVgηe. (19)

The wall plug efficiency is, therefore
ηwp = ηe

Vg

V
. (20)

Assuming a forward applied voltage of 1.8V, we can calculate the wall plug efficiency for the
previous example as 0.5%.
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Improving the Extraction Efficiency

Since the extraction efficiency is the primary limiting factor of the efficiency of LEDs, much work
has been done in improving this factor. We noted that the limitation comes mostly from the
escape cone. One method to increasing the escape cone is by increasing the refractive index of
the surrounding medium.

Figure 4: Escape cone improvement by
dome encapsulation

However, simply depositing a film of a higher refrac-
tive index material will accomplish nothing to improve
the escape cone. While the critical angle can be in-
creased at the semiconductor/film interface by using a
higher index film, the critical angle at the film/air inter-
face will reduce the angle such that the overall escape
cone will remain unaltered. The mathematical proof of
this is left as an exercise. On the other hand, a mate-
rial that is shaped like a dome, as shown in Fig 4, can
significantly improve the extraction efficiency. In this
case, the critical angle at the semiconductor/dome in-
terface will increase, but the angle of incidence at the
dome/air interface will always be normal. Assuming a
small emission area and a spherical dome, we can write
the extraction efficiency as

ηext =
1

2

(
n2

n1

)2

︸ ︷︷ ︸
Escape Cone

T1 T2 (21)

where T1 is the transmission across the LED/dome interface, and T2 is across the dome/air
interface (at normal incidence). Using a refractive index of n1 = 3.5 for the semiconductor and
a dome index of n2 = 1.6, we can get an extraction efficiency of 4.3%, which is three times larger
than without the dome.

Figure 5: Typical construction of an
LED

In most inexpensive LEDs, the dome material is made
of a transparent plastic. Although the refractive in-
dex is only around 1.6, this is simple to manufacture
and yields a 300% improvement in efficiency. Another
common technique is to roughen the LED surface. This
will create thousands of miniature facets on the LED
surface at random angles and allow more light to es-
cape without being reflected. Additionally, the LED may
also be mounted on a parabolic cup reflector or coated
on the backside to help redirect the photons emerging
from the backside of the diode.

A dome with an even higher refractive index would be
beneficial. High index plastics are very rare, but there
are high index dielectrics such as titania or silicon car-
bide which have refractive indices around 2.5. The re-
fractive index of GaN (which is the substrate used in
white LEDs) is also 2.5. Therefore, by using a SiC dome
with a reflector and an antireflection coating on the ex-
terior dome surface, in theory at least, we should be
able to achieve nearly 100% extraction efficiency from
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a GaN LED, but may be difficult to manufacture economically.

The substrate thickness is also an important limiting factor. Thicker substrates will re-absorb
the emitted photons before they reach the surface. Therefore, high efficiency LEDs typically
thin down the substrates in order to reduce this absorption.

Thermal Resistance

Besides the extraction efficiency, the next largest performance-limiting factor is heat extraction.
Since the wall plug efficiency of LED is on the order of 1%, the remaining 99% of power is dis-
sipated as heat in the semiconductor material. The internal quantum efficiency, ηi, is a strong
function of temperature. Elevated temperatures lead to degradation of ηi due to increased non-
radiative recombination processes. This is the primary reason for the reduced responsivity at
higher currents in Fig 3.

Figure 6: Cross-section of an LED designed for high power. Source: Cypress Semiconductors

Figure 7: Thermal resistance
model of an LED

While the construction shown in Fig 5 does not employ any spe-
cial considerations to reduce the junction temperature, Fig 6
shows the cross section of an LED designed for higher power op-
eration. In this case, the thermal resistance between the junction
and the ambient becomes the most important factor. The semi-
conductor is typically mounted such that the junction is closer
to the slug (known as flip-chip mounting). The slug has minimal
thermal resistance, and is soldered to a metal-core printed cir-
cuit board (MC-PCB). The metal-core increases the thermal con-
ductivity of the PCB, vertically as well as horizontally. Designing
effective heat dissipation mechanisms is one of the areas of in-
novations in LED designs.

The temperature of the junction will be determined by the sum
of all the thermal resistances between the junction and the am-
bient (or heat sink). For example, we can represent the ther-
mal resistances as RJS (junction-to-slug), RSB (slug-to-board)
and RBA (board-to-ambient), as shown in Fig 7. Additional resis-
tances may be present depending on the exact configuration of
the assembly. If we assume nearly all of the power in the LED is
dissipated as heat (neglecting the very small fraction that is emitted as photons), then we can
calculate the junction temperature as

TJ = P × (RJS +RSB +RBA) . (22)
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For example, if RJS = 5K/W, RSB = 5K/W, RBA = 10K/W, the total thermal resistance to
ambient is 20K/W. If the LED electrical power is 5W, the junction will be 5×20K warmer than the
ambient. If the ambient is 20◦C, the junction temperature will be 120◦C. As noted earlier, the
internal quantum efficiency will be lower at this elevated temperature, which is the main reason
why the responsivity declines with increasing current. Additionally, the mean time between
failure (MTBF) will also increase when the operating temperature is high.

LED Materials

LEDs require photon emission, which implies they can only be made using direct bandgap ma-
terials. Most of the LED materials are III-V or II-V semiconductors. The choice largely depend
on the emission wavelength and cost. The following a some of the most widely used semicon-
ductors for LEDs:

• AlxGa1−xAs: GaAs is the most mature III-V semiconductor and is widely used in optoelec-
tronics. Its bandgap is 1.42eV, which corresponds to a wavelength of 870nm. By alloying
GaAs with AlAs, it is possible to create a range of AlxGa1−xAs compositions. Most impor-
tantly, AlAs is lattice matched to GaAs, so very defect-free materials can be created this
way, resulting in very high quality (high internal quantum efficiency). The bandgap of
AlxGa1−xAs ranges from 1.42eV (when x = 0) to 2.17eV (when x = 1.0), however, the mate-
rial has a direct bandgap only for x < 0.45, which corresponds to a bandgap of 2.02eV, or a
wavelength of 615nm. Therefore, this material system is used for producing near-infrared
LEDs and red LEDs.

Figure 8: Bandgap of AlxGa1−xAs as a function of x

• GaAs1−xPx: GaAs and GaP can be mixed to create GaAs1−xPx alloys. However, they do
not share the same lattice constant, so adding phosphorous to GaAs will generally result
in strain and dislocations. Direct bandgap can be maintained only up to x = 0.5. The
bandgap of GaAs1−xPx with x = 0.5 is very similar to AlxGa1−xAs with x = 0.45. However,
adding nitrogen to the mixture allows higher values of x to be used, resulting in a direct
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bandgap as large 2.25eV. As a result, GaAs1−xPx:N can be used to produce emission wave-
lengths between 870nm (x = 0) and 550nm (x = 1.0). Therefore, GaAs1−xPx:N can access a
larger range of wavelengths from near infrared to the yellow.

• AlGa1−xPx: This is an indirect bandgap material, but doping with nitrogen makes it direct.
The range of bandgaps is fairly small, but it is one of the few materials that can emit in
the green (∼ 530nm).

• GaIn1−xNx: This is an alloy between GaN and InN. Blue and UV LEDs are produced using this
material system. Most white LEDs are actually constructed from a UV LED, whose emission
is absorbed and re-emitted using a phosphorescence coating. There are no substrates
lattice matched to this material system. Al2O3 (sapphire) substrates are widely used even
though it is not perfectly lattice matched.

Fiber Coupling

How effectively light can be coupled into an optical fiber is largely determined by the numerical
aperture of the fiber and the radiance (brightness) of the source. High brightness and high
numerical aperture is the best case scenario. We can derive the coupling efficiency as follows.

Figure 9: Coupling light into an optical fiber

Consider a fiber as shown in Fig 9, with a core index of n1 and a clad index of n2. Assuming a
large core multimode fiber, in order to support a guided mode, the angle of incidence at the
core/clad interface has to be larger than the critical angle, i.e.,

sin θ > sin θcr =
n2

n1
. (23)

At θ = θcr, the angle at the core/air interface will be

π

2
− θcr =

π

2
− sin−1

(
n2

n1

)
. (24)

Applying Snell’s law at this interface, we can get the angle on the air side of the interface, θa.

sin θa = n1 sin
(π
2
− θcr

)
(25)

= n1 cos θcr (26)

= n1

√
1− sin2

θcr (27)

= n1

√
1−

(
n2

n1

)2

(28)

=
√
n2
1 − n2

2 (29)
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In other words, the maximum incident angle that will be guided by the optical fiber is sin−1
(√

n2
1 − n2

2

)
.

This angle, sin θa, is also known as the Numerical Aperture (NA) of the fiber.

Earlier we assumed that the light emission from the LED junction was Lambertian. The light
emission from the LED’s escape cone can become modified by the geometry of the dome and
additional reflectors. In general, LED manufacturers fit the emission profile to an empirical
equation

I = Io cosn θ. (30)

We can calculate the fraction of the power coupled into the fiber by representing the LED as a
collection of point sources. For each point source, we can calculate the coupling efficiency as:

ηc =

∫ θa
0

(2πr sin θ) (rdθ) (Io cosn θ)∫ π/2

0
(2πr sin θ) (rdθ) (Io cosn θ)

(31)

=

∫ θa
0

sin θ cosn θ dθ∫ π/2

0
sin θ cosn θ dθ

(32)

=

(
1

n+1

)
cosn+1 θ

∣∣θa
0(

1
n+1

)
cosn+1 θ|π/20

(33)

=
cosn+1 θ

∣∣θa
0

cosn+1 θ|π/20

(34)

= 1− cosn+1 θa. (35)

In the case of n = 1 (Lambertian), the expression simplifies even further. It becomes

ηc = sin2
θa (36)

= (NA)2 . (37)

Figure 10: Polar intensity plot of cos3 θ
and cos θ.

The numerical aperture of multimode fibers can range
between 0.1 and 0.5, corresponding to an acceptance
angle between 6◦ and 30◦. For n = 1 this results in a
coupling efficiency between 1% and 25%. For n = 3, this
results in coupling between 2% and 44%. The higher
value of n results in a greater coupling because the
beam is narrower and more focused, resulting in more
energy being contained within the acceptance angle of
the fiber. This is shown in Fig 10.

It should be noted that this result was derived by as-
suming the emission area of the LED to be small. and
the LED to be placed directly against the face of the
fiber. If the LED emission area is larger than the fiber
core, the overall coupling will be the fractional overlap
area between the LED and the fiber core multiplied by
the same coupling expression (35). For example, if the
LED diameter is DL and the fiber core diameter is Df , expression (35) would become

ηc =
(
1− cosn+1 θa

)
for DL < Df (38)

ηc =

(
Df

DL

)2 (
1− cosn+1 θa

)
for DL > Df (39)
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At this point, it is important to review a fundamental principle in electromagnetics known as
the Brightness Theorem. Brightness is the intensity contained within a solid angle. The theo-
rem states that the light intensity (power per unit area) contained within a solid angle remains
constant. The product of the solid angle and area is known as etendu or optical throughput.
The brightness theorem can also described in terms of Lagrange invariant in geometrical optics.

Returning the LED coupling discussion, it is possible, in some cases, to increase the coupling
between an LED and a fiber by using a lens. This works only if the emitting surface is smaller
than the fiber core. A lens can be used to magnify and match the emitting surface onto the fiber
core, which effectively modifies the emission profile of the source. Remember that radiance
(brightness) is a conserved quantity in an optical system. That means, if the size of the source
is magnified by a factor M , then the emission angle from the image will get smaller by the
same factor to preserve the brightness. In other words, the emission beam angle will become
narrower when a source is magnified. This is illustrated in Fig 11. Assuming an emission profile
from the LED of I = Io cosn θ, this will result in a coupling efficiency of

ηc =
(
1− cosn+1 (Mθa)

)
for MDL < Df (40)

ηc =

(
Df

MDL

)2 (
1− cosn+1 (Mθa)

)
for MDL > Df (41)

Figure 11: Improving the coupling from an LED to a fiber by magnifying the emission area. This
figure illustrates the situation where the magnification is such that Df

MDL
= 1 with Df

DL
> 1.

For example, if the emission area of an LED has a diameter of 25µm with an emission profile
I = Io cos2 θ, and fiber has a core diameter of 100µm and a numerical aperture of 0.25 (θa =
sin−1

0.25 = 14.4◦), the coupling efficiency of 1−cos3 θa = 9.2% can be obtained by simply butt-
coupling the LED on the face of the fiber. However, it is possible to use a lens to magnify the
emission area by a factor of 4 to match the fiber core diameter. This will result in a reduction
in the emission angle by a factor of 4. The emission profile will become I = I0 cos2 (θ/4), where
θ corresponds to the emission angle from the unmagnified LED. The coupling efficiency will be
ηc = 1 − cos3 (4θa) = 0.85, or 85%. Magnifying beyond the size of the fiber will, of course, not
result in any improvement. Therefore, this technique only works when the LED emission area is
smaller than the fiber core.

If the LED emission area is larger than the fiber, whether or not using a lens will result in any
improvement depends on the LED emission profile and the size mismatch. In general, this
will not result in a noticeable improvement because any gain in the de-magnification of the
area will be offset by the increase in the angular divergence of the image. For example, us-
ing the same fiber as above, consider a 200µm LED emission area with a profile I = Io cos θ.
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Figure 12: Imaging an LED to a fiber by demagnifying the emission area does not increase cou-
pling. This figure illustrates the situation where the de-magnification is such that Df

MDL
= 1with

Df

DL
< 1

The magnification in this case is M = 0.5. Without a lens, the butt-coupled efficiency will be
ηc = 0.25

[
1− cos2 (θa)

]
= 0.0156. With the lens, ηc = 1 − cos2 (0.5θa) = 0.0159, which is nearly

the same as before. Therefore, the added complexity of using a lens is not justified.

Incidentally, we should be able to verify demagnifying a large source can improve the coupling
if n is very large. For example, if n = 50 in the above example, the butt-coupled efficiency will
be ηc = 0.25

[
1− cos51 (θa)

]
= 0.20. With demagnification, ηc = 1 − cos51 (0.5θa) = 0.33, which

is significantly higher. This is the main reason why laser beams (which have large values of n)
can be focused with a lens to improve coupling into a fiber.

Biasing and Modulating an LED

Figure 13: An LED biasing circuit with a
current-limiting resistor

LEDs are diodes, and just like any diode, they cannot
be directly connected to a constant-voltage source. A
limiting resistor must be used, or a constant-current
source must be used. We know that silicon diodes have
a built-in (or barrier) voltage of about 0.7V, but LEDs
have a wide range of built-in voltages because they
are made from a variety of different semiconducting
materials. Wide bandgap materials (shorter emission
wavelength) generally have a larger built-in voltage,
and narrower bandgap materials (longer wavelength)
will have a smaller built-in voltage. This is related to
the intrinsic carrier concentration ni. In wider bandgap
materials ni will be lower, which leads to a higher bar-
rier voltage from equation (10). For example, GaN LEDs (blue) need to be operated near 3.0V
while GaAs LEDs (near infrared) need to be operated at 1.6V.

A typical circuit for biasing an LED is shown in Fig 13. For example, if the LED has a forward
voltage of V f = 1.6V and the desired operating current is I = 100mA, and the supply voltage
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source is V 1 = 5V, the required series resistance can be calculated as

R1 =
V 1− V f

I
= 34Ω. (42)

V 2 is the small signal modulation voltage that is superimposed on the DC bias. To reduce
nonlinearity (Po vs I), the amplitude of the modulation voltage has to be kept fairly small.

Small Signal Current Modulation of LEDs

One of the main difference between the LEDs and other conventional light sources is that LEDs
have the capability to be modulated at a reasonably fast rate. LEDs are used in short-range
fiber communication systems that do not require very high speeds, and in free-space remote
control units. LED lighting has also been combined with modulation to simultaneously provide
illumination and communication capability, known as Lifi systems.

As noted before, the spontaneous emission in LEDs occur on either side of the junction due to
radiative recombinations. But the net carrier decay is due to both radiative and non-radiative
recombination. Assuming the carrier profile is confined to a small width on either side of the
junction, we can write

dn

dt
=

I

qV
− n− ns

τ
(43)

Figure 14: Illustration of a small AC signal
impressed on the DC signal.

where I is the forward current. V is the approxi-
mate volume of the region where the carriers re-
combine and ns is the average steady-state carrier
concentration. Therefore, n is the average carrier
concentration in this volume. The subtraction of
ni is not critical because the excess carrier con-
centrations are typically several orders of magni-
tude larger than the thermal equilibrium values.

Next, we will assume a small signal modulation on
the current. Since we are assuming a linear sys-
tem, this will produce a corresponding small signal
modulation in the carrier density, which will then
produce a small signal modulation in the optical
power output. This is illustrated in Fig 14. There-
fore:

I = Io + δIejωt (44)
P = Po + δPejωt (45)
n = no + δnejωt (46)

where Io is the dc bias current of the LED. In other words,

0 =
Io
qV

− no − ns

τ
. (47)

Substituting equations (44) and (46) into equation (43) results in

dn

dt
=

Io + δIejωt

qV
− no + δnejωt − ns

τ
. (48)
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Substituting the dc bias condition from equation (47) results in

jω δn ejωt =
δIejωt

qV
− δnejωt

τ
(49)

jω δn =
δI

qV
− δn

τ
(50)

δn

(
jω +

1

τ

)
=

δI

qV
(51)

δn

δI
=

1

qV
(
jω + 1

τ

) . (52)

We can manipulate this expression further:

δn qV

δI
=

1(
jω + 1

τ

) (53)

=
τ

(1 + jωτ)
. (54)

Now, multiply both sides by Eg

q ηe, which is the definition of Resonsivity, as per equation (16),
we can get:

(δn/τ) qV

δI

Eg

q
ηe =

1

(1 + jωτ)

Eg

q
ηe (55)

=
R

(1 + jωτ)
. (56)

We can interpret the numerator on the left side, δnV Egηe

τ as the modulated optical power output
from the LED. Therefore, we can represent it with the symbol δP . This leads to:

δP

δI
=

R

(1 + jωτ)
(57)

r =
R

(1 + jωτ)
(58)

where we have represented δP
δI as the AC responsivity, r. As we can see, the modulated power

declines from the DC responsivity value as the modulation frequency increases.

In magnitude, we can write equation (58) as

|r| = |R|√
(ωτ)

2
+ 1

(59)

From this, we can note that the magnitude of the AC responsivity drops to half the value of the
DC responsivity at a frequency of

f3dB =

√
3

2πτ
. (60)

This is designated as the 3dB modulation bandwidth of the LED, and is typically the useful mod-
ulation bandwidth of the device. For example, if τ = 10ns, the 3dB modulation bandwidth of
the LED will be 27MHz.
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Figure 15: Responsivity vs frequency

The responsivity can also be plotted
as a function of frequency, typically
on a log-log scale. This allows the
knee of the curve to be identified as
the 3dB point. An example is shown
in Fig 15.

Large Signal Current Modulation

The large signal modulation response can be determined by directly solving the rate equation
(43). For example, the step-up response of the LED can be determined by integrating the first
order differential equation with the appropriate initial conditions. The current starts from zero
at t = 0 and steps up to a value of Io and remains there until time t. The carriers will respond
according to the following equation:∫ n

ns

dn

Ioτ − qV (n− ns)
=

1

qV τ

∫ t

0

dt, (61)

where V is the volume. This results in

n = ns +
Ioτ

qV

(
1− e−t/τ

)
. (62)

From this, the optical output power can be calculated using

P = V
n− ns

τr
Egηext. (63)

Substituting for n− ns from equation (62), we can get

P = Io

(
τ

τr

)(
Eg

q

)
ηext

(
1− e−t/τ

)
(64)

= IoηiVgηext

(
1− e−t/τ

)
(65)

= Io R
(
1− e−t/τ

)
. (66)

Similarly, the step-down response can be solved by replacing the initial conditions on the inte-
gral, resulting in

P = IoR e−t/τ . (67)
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To make the numerical solution easier, we can also express the step-up response as

dP

dt
=

IoR− P

τ
, (68)

and the step-down response as
dP

dt
=

P

τ
. (69)

Fig 16 shows the light output from an LED when it is modulated at 27Mb/s using RZ (Return to
Zero) encoding. The orange line corresponds to an LED with a lifetime of 10ns (which makes
the digital modulation frequency the same as the 3dB frequency, f3dB). The magenta line cor-
responds to a lifetime of 1ns (which corresponds to a digital modulation frequency of f3dB/10).

Figure 16: Optical waveform using RZ encoding at 27Mb/s on an LED with lifetimes of 10ns and
1ns.

Spontaneous Emission

The photons emitted in an LED occur as a result of random recombination between electrons
and holes. Even though this process has a recombination lifetime τr, this lifetime is a statistical
average, not a precise value. Furthermore, each recombination is uncorrelated to the previous
recombination. As a result, these photons arrive at random times with random directions and
orientations. This is known as spontaneous emission. In this section we will derive the spectral
shape of an LED emission.

In terms of the band structure of the material, the spontaneous emission rate can be written as

↓ r21 (E) =
[
ρ−1
c (E2) + ρ−1

v (E1)
]−1

f (E2) [1− f (E1)] A21, (70)
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Figure 17: Spontaneous Emission

where

• ↓ r21 (E) is the number of photons emitted per unit time per unit volume per unit energy.

•
[
ρ−1
c (E2) + ρ−1

v (E1)
]−1 is the joint density of states, often written as ρJ (E), in the units

of number of states per unit volume per unit energy.

• f (E2) is the Fermi distribution in the conduction band (i.e., the probability of a conduction
band state at energy E2 being occupied).

• [1− f (E1)] is the probability of a valence band state with energy E1 being vacant.

• E2 − E1 is the photon energy.

• A21 is the transition rate constant.

With no forward bias, the p-side and the n-side will be characterized by a single Fermi level
EF . Under forward bias, we demonstrated that the Fermi level will split into EFN and EFP near
the junction, producing an non-equilibrium electron-hole concentration. These are known as
quasi-Fermi levels. Because the Fermi levels are different for f (E1) and f (E2), we need to
make a distinction between the two expressions. We will write these as

f (E2) = fc (E2) =
1

e(E2−EFN )/kT + 1
(71)

f (E1) = fv (E1) =
1

e(E1−EFP )/kT + 1
. (72)

Therefore, the emission rate can be written as

↓ r21 (E) =
[
ρ−1
c (E2) + ρ−1

v (E1)
]−1

[
1

e(E2−EFN )/kT + 1

] [
1− 1

e(E1−EFP )/kT + 1

]
A21. (73)

One problem with equation (73) is that it is in terms of E2 (energy of the electron in the conduc-
tion band) and E1 (energy of the hole in the valence band), while the photon energy is in terms
of E = E2 − E1. Although they are related quantities, it would be simpler to have the entire
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expression in terms of E rather than E. This can be done by utilizing the fact that the parabolic
band structure in the conduction and valence bands are characterized by

E2 = Ec +
�h

2
k2

2mc
(74)

E1 = Ev −
�h

2
k2

2mv
(75)

where Ec and Ev are the conduction and valence band edges, and mc and mv are the conduction
band and valence band effective masses. Subtracting equation (75) from (74) results in

E2 − E1 = (Ec − Ev) +
�h

2
k2

2

(
1

mc
+

1

mv

)
. (76)

This can be written as

E = Eg +
�h

2
k2

2mr
, (77)

where Eg is the material bandgap, E is the photon energy and mr is a reduced effective mass
defined as

1

mr
=

1

mc
+

1

mv
. (78)

We can re-arrange equation (77), to get

�h
2
k2 = 2mr (E − Eg) . (79)

We can then substitute equation (79) into equations (74) and (75) allows us to get an expression
for E1 and E2 in terms of the photon energy E:

E2 = Ec + (E − Eg)
mr

mc
(80)

E1 = Ev − (E − Eg)
mr

mv
. (81)

As a result, we can write the expressions for the Fermi distributions in terms of the photon
energy E:

fc (E2) =
1

e(Ec+(E−Eg)
mr
mc

−EFN)/kT + 1
(82)

fv (E1) =
1

e(Ev−(E−Eg)
mr
mv

−EFP )/kT + 1
. (83)

Additionally, the joint density of states can also be simplified in terms of the reduced effective
mass mr. In fact, it has the exact form as the conduction or valence band expressions:

ρJ (E) =

√
2m

3/2
r

π2�h
3 (E − Eg)

1/2
, (84)
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Now, we can express the spontaneous emission entirely in terms of E as the independent vari-
able:

↓ r21 (E) =

√2m
3/2
r

π2�h
3 (E − Eg)

1/2


︸ ︷︷ ︸

ρJ (E)

[
1

e(Ec+(E−Eg)
mr
mc

−EFN)/kT + 1

]
︸ ︷︷ ︸

fc(E2)

[
1− 1

e(Ev−(E−Eg)
mr
mv

−EFP )/kT + 1

]
︸ ︷︷ ︸

1−fv(E1)

A21.

(85)
EFN is quasi-Fermi level on the n-side, and EFP is the quasi-Fermi level on the p-side. At zero
bias, the Fermi level will be at the intrinsic value at the metallurgical junction. Representing
this Fermi level position as Ei, the quasi-Fermi levels can be written as

EFN = Ei +∆EFN (86)

where ∆EFN is the shift in Fermi level due to the applied bias

∆EFN = EFN − Ei. (87)

Similarly, the p-side quasi-Fermi Level can be written as

EFP = Ei −∆EFP (88)

where
∆EFP = Ei − EFP . (89)

Using this, equation (85) can be written as

↓ r21 (E) =

√2m
3/2
r

π2�h
3 (E − Eg)

1/2


︸ ︷︷ ︸

ρJ (E)

[
1

e(Ec−Ei−∆EFN+(E−Eg)
mr
mc

)/kT + 1

]
︸ ︷︷ ︸

fc(E2)[
1− 1

e(Ev−Ei+∆EFP−(E−Eg)
mr
mv

)/kT + 1

]
︸ ︷︷ ︸

1−fv(E1)

A21. (90)

Finally, we can also make the assumption that the applied voltage Va contributes equally in
moving the quasi-Fermi levels. That is,

∆EFN = ∆EFP =
qVa

2
, (91)

which allows us to get the final expression for spontaneous emission:

↓ r21 (E) =

√2m
3/2
r

π2�h
3 (E − Eg)

1/2


︸ ︷︷ ︸

ρJ (E)

[
1

e(Ec−Ei−qVa/2+(E−Eg)
mr
mc

)/kT + 1

]
︸ ︷︷ ︸

fc(E2)[
1− 1

e(Ev−Ei+qVa/2−(E−Eg)
mr
mv

)/kT + 1

]
︸ ︷︷ ︸

1−fv(E1)

A21. (92)

Since A21 is a constant, we can disregard it for now and plot the emission spectrum on a relative
scale. Using GaAs as the LED material, with Eg = 1.42eV, mc = 0.067m0, mv = 0.5m0, T = 300K,
we can get the emission spectrum as depicted in 18.
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We can clearly see that the emission starts at the bandgap wavelength (λg = 1.24/1.42 =
0.873µm, and extends to shorter wavelengths. The bias voltage has a pronounced effect on
the amplitude of the emission. As a matter of fact, even zero bias voltage will produce an emis-
sion profile. In Fig 18, this emission has been subtracted out, so what appears is actually the
excess emission. This may seem a bit odd, but the presence of emission at zero bias is a result
of thermal excitation. Even at zero bias, carriers are continuously being excited from valence
band to the conduction band, resulting in a steady-state background recombination.

Figure 18: Calculated Spontaneous Emission Spectrum for a GaAs LED
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Homework 4
1. Consider a GaAs LED with a dome-shaped epoxy encapsulation (refractive index=1.6). The

internal quantum efficiency is 50%. Estimate the responsivity.
Run this code
import k o t l i n . math .*
//Andrew Sarangan

fun main ( ) {
va l e ta In t = 0 .5
val nS = 3 . 5
val nEpoxy = 1 . 6
val nA = 1 . 0
val Vg = 1 . 4 2
val etaExt = ( nEpoxy/nS ) . pow ( 2 ) *0 .5* ( 1 .0 − ( ( nS−nEpoxy ) / ( nS+nEpoxy ) ) . pow ( 2 ) ) * ( 1 . 0
− ( ( nEpoxy−nA ) /( nEpoxy+nA ) ) . pow ( 2 ) )
p r i n t l n ( ” eta_ext = $ {”%.3 f ” . format ( etaExt ) } ” )
va l etaE = eta In t * etaExt
val R = Vg*etaE
p r i n t l n ( ” R = $ {”%.3 f ” . format ( R*1000.0) } mW/A ” )

}

>> eta_ext = 0.085
>>R = 60.489 mW/A

2. In an attempt to increase the extraction efficiency from a GaAs LED, it was coated with a
1µm thick film of refractive index 2.2. Using ray angles, show that the extraction efficiency
will not be improved by this coating.

See Fig 19.

Figure 19: Comparison of escape cone with and without a film

3. Consider an LED with a 500µm-diameter emitting aperture and an angular dependence of
intensity that is proportional to cos2 θ. A 50µm-diameter optical fiber with a core refractive
index of 1.46 and a numerical aperture of 0.3 is used to collect the LED emission. Calculate
the fraction of LED optical power that is coupled into the fiber. Can a lens be used to
collimate this LED to improve coupling?
Run this code
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import k o t l i n . math .*
//Andrew Sarangan

fun main ( ) {
va l LED = 500.0
val f iberD = 50.0
val NA = 0 .3
val n = 2
val thetaA = asin (NA)

val etaC = ( f iberD /LED ) . pow ( 2 ) * (1.0− cos ( thetaA ) . pow( n + 1 ) )
p r i n t l n ( ” Coupling without lens = $ {”%.5 f ” . format ( etaC ) } ” )

}

Coupling without lens = 0.00132

4. A miniature LED chip is aligned to a 0.25 NA optical fiber using a ball lens. The fiber core
diameter is 50µm. The led emission aperture is 10µm. The intensity distribution of the
LED chip is cos θ. What is the highest coupling that could be achieved with this setup?
Run this code
import k o t l i n . math .*
//Andrew Sarangan

fun main ( ) {
va l LED = 10 .0
val f iberD = 50.0
val NA = 0 .25
val n = 1
val thetaA = asin (NA)
val M = f iberD /LED
val etaC = 1.0−cos (M* thetaA ) . pow( n + 1 )
p r i n t l n ( ” Coupling with lens = $ {”%.3 f ” . format ( etaC ) } ” )

}

>>Coupling with lens = 0.908

5. The internal quantum efficiency of an LED is 0.5. The radiative recombination lifetime is
10ns. What is the 3dB modulation bandwidth of the LED?
Run this code
import k o t l i n . math .*
//Andrew Sarangan

fun main ( ) {
va l e ta I = 0 .5
val tauR = 10 .0
val tauNR = tauR / ( 1 . 0 / etaI −1 .0)

p r i n t l n ( ” tau_nr = $ {”%.3 f ” . format ( tauNR ) } ” )
va l tau = 1 . 0 / ( 1 . 0 / tauR + 1 .0/ tauNR )
p r i n t l n ( ” tau = $ {”%.3 f ” . format ( tau ) } ” )
va l dB3 = 3 . 0 . pow ( 0 . 5 ) / ( 2 . 0* PI* tau )
p r i n t l n ( ” 3 dB = $ {”%.3 f ” . format ( dB3*1000.0) } MHz” )

}

>> tau_nr = 10.000
>>tau = 5.000
>>3dB = 55 . 13 3 MHz
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Luminosity & Photometrics

Figure 1: Luminosity function: black is for day-
time vision, and green is for nighttime vision.
Source: Wikipedia

When used for visible illumination applica-
tions, the relevant quantity is not radiative
power, but luminous power. The spectral re-
sponse of the human eye greatly influences
the perception of light power. Human eye re-
sponse peaks at a wavelength of 555nm, and
falls off to nearly zero at 420nm in the blue,
and at 700nm in the red. We can consider
the human eye as an optical filter. The trans-
mittance of this filter, normalized to a max-
imum value of 1.0 at the peak wavelength of
555nm, is referred to as the luminosity func-
tion, V (λ).

An approximate expression for the luminosity
function can be written empirically by

V (λ) = 1.019e−285.4(λ−0.559)2 , (1)

where λ is the wavelength in µm. The luminosity function varies from person to person, and
also from daytime to nighttime. Under bright illumination, the peak response of the eye is at
555nm. Under dimly lit conditions, different parts of the eye (the rod cells) become more active,
whose luminosity function is blue-shifted by about 50nm. These functions are shown in Fig 1.
The peak value of the nighttime function is about three times larger (greater sensitivity) than
the daytime function, but they are shown normalized in this plot.

All radiometric quantities have equivalent photometric counterparts. Before discussing these,
it is useful to briefly review the radiometric quantities:

• Radiant power (usually in watts) is the total electromagnetic power emitted by a source
in all directions.

• Irradiance (watts/m2) is the electromagnetic power that is received on a unit surface area
of the target.

• Radiant intensity (watts/sr) is the electromagnetic power emitted by the source within one
unit of solid angle.

• Radiance (watts/sr/m2) is the radiant intensity divided by the surface area of the source.
This is what is generally known as brightness. Radiance is an invariant quantity in an
optical system.

• Radiant efficiency (wall plug efficiency) is the ratio of radiant power emitted by the source
divided by the electrical power supplied to that source.

When these radiometric quantities are filtered by the luminosity function, we get their equiva-
lent photometric quantities.

• Photometric power (luminous power or luminous flux) is the radiometric power filtered
by the luminosity function. It is usually measured in Lumens. This is the radiative power
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perceived by the human eye. One watt of optical power at a monochromatic wavelength
of 555nm is defined as being equivalent to 638 Lumens. Therefore, if ϕe (λ) is the radiative
spectral emission (in watts/nm), the number of Lumens in that emission can be calculated
by integrating the product of spectral emission and the luminosity function normalized to
a peak value of 1.0, and then multiplying by 638 Lumens/Watt:

Φv = 638

∫ ∞

0

V (λ)ϕe (λ) dλ. (2)

• The photometric equivalent of irradiance (watts received per unit area) is illuminance. It
is measured in Lux, where one Lux is defined as one lumen per square meter.

• Photometric intensity (luminous intensity) is measured in number of lumens per unit solid
angle. One lumen per steradian is defined as a candela.

• Photometric radiance (luminance or brightness) is measured in candelas per square me-
ter.

• Luminous efficiency is the number of lumens emitted by a source divided by the electrical
power supplied to that source, expressed in lumens per watt.

• There is also an alternative definition, known as luminous efficacy, K. This is the number
of lumens in one unit of radiant power (instead of electrical power). This is calculated as

K =
Φv

Φe
=

638
∫∞
0

V (λ)ϕe (λ) dλ∫∞
0

ϕe (λ) dλ
. (3)

A summary of these quantities is shown in table 1.

Radiometric Units Photometric Units Conversion
Radiant Power W Luminous Flux Lumens 1W@555nm = 638 Lumens
Irradiance W/m2 Illuminance Lux Lux = Lumen/m2

Radiant Intensity W/sr Luminous Intensity Candela Candela = Lumens/sr
Radiance (Brightness) W/sr/m2 Luminance Candela/m2

Radiant Efficiency W (radiation)/W (electrical) Luminous Efficiency Lumens/W (electrical)
Luminous Efficacy Lumens/W (Radiant)

Table 1: Summary radiometric and photometric quantities

Table 2 lists the luminous efficiency of common types of lamps. Incandescent lamps have the
lowest number of lumens per electrical watts, while sodium vapor lamps have the highest. White
LEDs fall somewhere between compact fluorescent lamps and halogen lamps.

For example, a standard 60W incandescent light bulb will produce about 800 lumens, whereas
the same 800 lumens can be achieved with a 12W LED lamp, or a 14W compact fluorescent lamp.
A T8 linear fluorescent lamp (16W) will produce 1600 lumens.

Luminous Efficiency of Thermal Radiation

Every object whose temperature is greater than 0 K will emit photons. The intensity and wave-
length of these photons will be a strong function of temperature, as well as its surface prop-
erties. The latter is characterized by a dimensionless constant known as emissivity, ϵ. The
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Lamp Type Luminous Efficiency
(Lumens/Watt)

Incandescent 8-18
Halogen 20-30
CFL 50-75
White LED 100-200
Linear Fluorescent 80-110
Sodium Vapor Discharge 100-200

Table 2: Luminous efficiency of common lamps

emission spectrum from a point source is described by Plank’s law, which states

ϕp
e (λ) = ϵ

2hc2

λ5

1

ehc/λkT − 1
(4)

where ϕp
e (λ) is the spectral radiance (power per unit area per unit solid angle per unit wave-

length). This expression does not have any angular dependence (i.e. it is independent of Ω
and θ) because a point source will emit equally in all directions. A collection of such points on
a surface, however, will have an angular distribution, which follows Lambert’s cosine law. As
discussed earlier, this arises directly as a result of the invariance of radiance. Consequently,
the spectral radiance of a surface will have an additional cos θ term:

ϕs
e (λ, θ) = ϕp

e (λ) cos θ. (5)

Following the same procedure as with the LED extraction efficiency, we can calculate the power
emitted by one face of a surface per unit area per unit wavelength by performing the integral
in spherical coordinates:

ϕs
e (λ) =

∫ 2π

0

∫ π/2

0

ϕs
e (λ, θ) sin θ dθ dϕ (6)

=

∫ 2π

0

∫ π/2

0

ϕp
e (λ) cos θ sin θ dθ dϕ (7)

= 2πϕp
e (λ)

sin2
θ

2

∣∣∣∣∣
π/2

0

(8)

= πϕp
e (λ) (9)

The total radiant power emitted by the surface over all wavelengths becomes:

Φe =

∫ ∞

0

ϕs
e (λ) dλ. (10)

The photometric power can be obtained by applying the luminosity function to the radiant
power and multiplying by 683 Lumens/Watt:

Φv = 683

∫ ∞

0

V (λ)ϕs
e (λ) dλ. (11)

The value of emissivity ϵ in equation (4) can vary between 0 and 1. Highly reflective surfaces
have low values of ϵ, whereas low-reflective or textured surfaces have values closer to 1.0. For
example, reflective aluminum has a value of 0.05, whereas paper, skin and other textured sur-
faces, including smooth surfaces such as glass have values around 0.95. An ideal blackbody
source will have ϵ = 1.0.
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Luminous efficacy is the ratio between Φv and Φe. This is the visible fraction of the radiative
power. Fig 2 shows the black body spectrum of the sun (5778K) assuming ϵ = 1.0, using the
luminosity function corresponding to day time vision. The integrated power Φe using equation
(10) is 63.1MW/m2. This is the power density at the surface of the sun. The luminous efficacy
(the ratio between Φv and Φe) is 92 Lumens/Watt. The actual efficacy value on earth may vary
somewhat due to solar activities, atmospheric absorption, Rayleigh scattering, etc.. but it is in
the range of 80-100 Lumens/Watt.

Figure 2: Black body spectrum of the sun and the luminosity function
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Homework 5
1. Considering a tungsten halogen lamp as an ideal black body source with a filament tem-

perature of 3000K, calculate the luminous efficacy (lumens per watt) of this light bulb.
How does it compare with the efficacy of solar illumination?
Run this code
import k o t l i n . math .*
//Andrew Sarangan
//Repeat the same ca lcu la t ion as in notes with T=3000K

fun main ( ) {
va l c = 3 .0 e8
val k = 1 . 3 8 e−23
val h = 6.62607e−34
val epsi lon = 1 . 0
val s t a r t = 0 . 1 e−6
val end = 5 .0 e−6
val dlambda = 1 . 0 e−10
val T = 3000.0

val wavelengths = DoubleArray ( ( ( end−s t a r t ) /dlambda ) . t o I n t ( ) ) { s t a r t + i t *dlambda }
val phi_es = wavelengths .map{

epsi lon*PI *2.0*h*c . pow ( 2 ) / i t . pow ( 5 ) / ( exp ( h*c /( i t *k*T ) ) −1.0)
} . toDoubleArray ( )

va l PHIe = phi_es . sum ( ) *dlambda
val V = wavelengths .map{

1 .019* exp ( −285.4* ( i t *1 .0 e6−0.559) . pow ( 2 ) ) } . toDoubleArray ( )
va l PHIv = 683.0* phi_es . z ip ( V ) { a , b −> a*b } . sum ( ) *dlambda
p r i n t l n ( ” $ {”%.3 f ” . format ( PHIv/PHIe ) } Lumens/W” )

// wavelengths . forEachIndexed { i , v −>
// p r i n t l n ( ” $ { v }\ t$ { phi_es [ i ] } ” )
// }
}

> >21.081 Lumens/W
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Semiconductor Diode Lasers

Basic Description

A semiconductor diode laser is an oscillator, just like a microwave or RF oscillator. To build an
oscillator, we need two components

• An amplifier;

• A feedback mechanism.

Schematically, we can represent an oscillator connecting the output of the amplifier back to the
input side via a feedback filter, as depicted in Fig 1. The function of this circuit can be derived

Figure 1: A generic oscillator configuration using an amplifier and a feedback.

as follows. At the summing junction on the input side, we can write

Ei + Eqβ =
Eq

A
. (1)

where β is the feedback. From this, we can get

Ei =

(
1

A
− β

)
Eq, (2)

Eq

Ei
=

A

1− βA
. (3)

The expression for Eq

Ei
represents the ratio between the circulating field in the circuit and the

input field. We can see that this ratio becomes very large when βA → 1. In other words, when
the round trip factor (also known as the loop gain) becomes equal to one, we can get a very
large circulating field for a very small input signal. However, in general, A and β will have some
frequency dependence. This means βA → 1 will be satisfied only at specific frequencies. These
are the oscillation frequencies of this oscillator. Since the ratio is extremely large at these
frequencies, the circulating field inside the cavity will be finite even with a nearly zero input
(which actually arises from noise sources in the environment). Hence the circuit functions as a
self-sustaining oscillator.
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An optical oscillator (laser) is built using

• An optical amplifier with a gain of A (ω), which can be obtained from semiconductors as
well as in certain gas plasmas and solids;

• A feedback mechanism, which is normally realized using mirrors or other types of reflec-
tors.

Consider an optical plane wave Eqe
−jkz where k is the wave vector given by k = 2πneff

λ , neff is
the effective index of the medium and λ is the wavelength. If this wave is traveling between two
mirrors with reflectivity r and a distance L, as depicted in Fig 2, we can trace the plane wave
from some point between the mirrors towards the right mirror, and then the left mirror, and
returning to the original point. If the original field had an amplitude of Eq , by the time the field
completes one round-trip, it will have an amplitude of r2Eq and a phase of e−2jkL. Therefore,
we can say that the round trip factor β (ω)A (ω) will be equal to r2e−2jkL. Since |r| < 1, the
round trip factor will be |β (ω)A (ω)| < 1. As a result, there will be no oscillations possible.

Figure 2: A simple optical cavity between two mirrors

Next, consider an amplifier placed between the mirrors such that the field grows exponentially
as it travels through this amplifier. This is shown in Fig 3. We will assume that the amplifier has
the same phase value of k except for the addition field gain coefficient γ. As a result, the round
trip factor β (ω)A (ω) will be r2e−2jkLe2γL. We should be able to see that the round trip factor
can now become equal to 1, and allow oscillation to take place.

Figure 3: Same optical cavity as in Fig 2 with an amplifier.

In order for the round trip factor to be 1.0, two aspects must be satisfied:

• The amplitude of the round trip factor must be equal to 1.0;

• The phase of the round trip factor must be in multiples of 2π.

We will examine each of these separately.
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Amplitude

The amplitude condition |βA| can be expressed as∣∣r2e−2jkLe2γL
∣∣ = 1. (4)

Assuming the reflectivity r is real, this becomes:

r2e2γL = 1, (5)

from which we can get

γ =
1

2L
ln
(

1

r2

)
. (6)

This is known as the threshold gain condition of the laser, and if often represented by the symbol
γth. We can see that the threshold gain is inversely related to the length of the amplifier (i.e., a
higher gain is required from a shorter amplifier). The threshold gain is also inversely related to
the reflectivity (i.e., a higher gain is required if the reflectivity of the mirrors are low).

The threshold gain is often expressed in terms of optical power (rather than field amplitudes).
Since power scales as the square of the field amplitudes, the threshold power gain will be

2γth =
1

2L
ln
(

1

r4

)
, (7)

Gth =
1

2L
ln
(

1

R2

)
(8)

where R = r2 is the reflectivity of optical power, whereas r is reflectivity of optical fields.

Phase

The phase condition of the round trip factor can be expressed as

e−2jkL = e−2jNπ (9)

where N is an integer. This can be further manipulated as

2kL = 2Nπ (10)

k =
Nπ

L
(11)

λ =
2neffL

N
. (12)

From this, we can conclude that the oscillation will be at discrete wavelengths corresponding
to integer values of N .

Typically, a number of wavelengths can simultaneously oscillate, resulting in what is known as
multi-longitudinal-mode lasing. This does not mean an infinite number of lines will oscillate.
Only a handful of lines near the spectral gain peak of the semiconductor material will oscillate.
Other lines farther from the gain peak will not reach the threshold gain, and will not oscillate.
This is illustrated in Fig 4.
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Figure 4: Fabry-Perot oscillations near the gain
peak of the semiconductor

Figure 5: Only one or two Fabry-Perot lines will
reach threshold

Figure 6: Measured spectrum of a Fabry-Perot
laser. Source: Nanoplus, Germany

This means that the value of N cannot be any
integer. For example, a 1.5µm diode laser
will have its amplifier gain limited to a small
range around 1.5µm. If L = 1mm and neff =
3.5, we can find that N will be around 4600.

Strictly speaking, only one or two laser lines
will be at or near the peak of the gain spec-
trum. This is due to the shape of the gain
spectrum. This situation is illustrated in Fig 5.
In practice, however, the gain spectrum will
never be perfectly static. Small fluctuations
in the forward current will produce small fluc-
tuations in the carrier density, which will shift
the gain peak to the left and right. As a result,
on average, there will be many more laser
lines that will oscillate. The number of las-
ing lines will depend on the cavity length L,
current and temperature stability of the sys-
tem.

Fig 6 shows the actual emission spectrum
from a Fabry-Perot laser, designed for oper-
ation near a wavelength of 1600nm. We can
clearly identify the shape of the gain spec-
trum as well as the Fabry-Perot lasing peaks.
As we will see in the discussion of gain in
semiconductors, the location of the gain peak
is a function of temperature as well as the
current density. Therefore, the wavelength of
Fabry-Perot lasers will never be stable. There
are other types of laser cavities where the las-
ing wavelength can be designed to be rela-
tively more stable (such as DFB, DBR and VC-
SELs).
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Fabry-Perot Line Spacing

The type of a laser cavity consisting of two mirrors enclosing a gain region is known as a Fabry-
Perot Cavity. This is the simplest type of laser cavity. Other types of laser cavities will be ex-
plored later in this document.

We saw that the emission wavelengths of a Fabry-Perot cavity occur at discrete values of N .
Although we can calculate the spacing between these wavelengths by considering adjacent in-
teger values of N , the material dispersion also plays an important role in this calculation. We
can derive an expression for the wavelength spacing ∆λ as follows:

We can re-write equation (12) as
N =

2neffL

λ
. (13)

We can now find
∆N

∆λ
= −2neffL

λ2
+

2L

λ

dneff
dλ

. (14)

From this, we can get
∆λ =

∆N

− 2neffL
λ2 + 2L

λ
dneff
dλ

. (15)

Since the smallest increment in wavelength ∆λ will be due to ∆N = −1, the above equation
becomes:

∆λ =
−1

− 2neffL
λ2 + 2L

λ
dneff
dλ

(16)

=
λ2

2neffL

(
1− λ

neff

dneff
dλ

.

)
. (17)

This can also be expressed as

∆λ =
λ2

2ngL
(18)

where ng is the group index of refraction defined as

ng = neff

(
1− λ

neff

dneff
dλ

.

)−1

. (19)

In terms of frequency, this can also be written as

∆ν =
c

ngL
. (20)

The group index ng can be very different than neff. The wavelength spacing between emission
lines is, therefore, determined by the laser cavity length and the group refractive index. This is
also known as the free spectral range (FSR). For example, the value of neff in most semiconductor
materials is about 3.5, whereas ng can be as large as 4.5. The resulting value for ∆λ would be
significantly different had we neglected the effects of dispersion, viz., dneff

dλ .
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Cavity Losses & Efficiency

If the mirror reflectivities are different, the expression for threshold gain (power) will become

Gth =
1

2L
ln
(

1

R1R2

)
, (21)

where R1 and R2 are the reflection from the two mirrors.

We normally write

αm =
1

2L
ln
(

1

R1R2

)
, (22)

where αm represents the ”losses” associated with the mirrors, and is referred to as the mirror
loss term. This is the equivalent attenuation per unit length along the laser cavity due to the
mirror reflectivities being less than unity. One can also view this as arising due to the transmis-
sion through the mirrors (considering the transmitted power as being ”lost”).

We can also separate αm into αm1 and αm2 associated with each mirror. αm1 is the mirror loss
due to the first mirror, and αm2 is the mirror loss due to the second mirror. Therefore,

αm = αm1 + αm2, (23)

where

αm1 =
1

2L
ln
(

1

R1

)
(24)

αm2 =
1

2L
ln
(

1

R2

)
. (25)

All semiconductor lasers have other losses in addition to mirror losses, such as scattering losses
αs and absorption losses αa. These are treated exactly like the mirror losses. We can lump all
of these losses into a single parameter known as the cavity loss αc, which becomes:

αc = αm1 + αm2 + αs + αa. (26)

For laser oscillation to occur, threshold gain has to overcome all of these losses, not just the
mirror losses. Here we are assuming that αs and αa exist only within the semiconductor length
L, and not over the entire cavity length L. In practice, however, this is a moot point because in
nearly all semiconductor lasers the cavity length L is exactly equal to the gain length L. Now,
equation (21) can be modified to include these additional losses, such as

Gth = αm1 + αm2 + αs + αa (27)
= αc. (28)

Normally, the transmission through one mirror is considered the useful output from the laser,
and the transmission through the other mirror is discarded. Naturally, to avoid unnecessary
losses, the output mirror is carefully chosen to optimize the laser performance, whereas the
other mirror (backside mirror) is chosen to have a very high reflectivity to prevent unnecessary
transmission losses.

The efficiency of a laser is the ratio between the ”useful” losses (extracted photons) and the
total losses in the laser cavity. Considering mirror #1 as the output mirror (useful loss), we can
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write the extraction efficiency as
ηext =

αm1

αc
. (29)

The interpretation of the extraction efficiency ηext is identical to light emitting diodes. If we
express equations (28) and (29) as

Gth =
1

2L
ln
(

1

R1R2

)
+ αs + αa, (30)

ηext =

1
2L ln

(
1
R1

)
1
2L ln

(
1

R1R1

)
+ αs + αa

, (31)

=

1
2 ln

(
1
R1

)
1
2 ln

(
1

R1R1

)
+ αsL+ αaL

, (32)

we can come to some interesting conclusions. From the above expressions, we can see that
threshold gain will decrease as the gain length L increases, but the laser extraction efficiency
will decrease as the gain length increases. In other words, unless we can eliminate αs and αa

entirely, we cannot simultaneously achieve a low threshold gain and high efficiency.

Example

Consider a semiconductor laser material withL = 300µm, λ = 0.85µm, neff = 3.5, αs+αa = 5/cm.
The output facet is as-cleaved, and the other facet is coated for 95% reflectivity.

Using the given values, we can calculate the reflectivity at the as-cleaved semiconductor/air
interface as:

R1 =

∣∣∣∣3.5− 1.0

3.5 + 1.0

∣∣∣∣2 = 0.31. (33)

The mirror loss αm1 can be calculated as:

αm1 =
1

2L
ln
(

1

R1

)
= 19.6/cm. (34)

The second (coated) mirror loss is:

αm2 =
1

2L
ln
(

1

R2

)
= 0.85/cm. (35)

The total cavity loss can then be calculated:

αc = αm1 + αm2 + αs + αa = 25.4/cm. (36)

Therefore, the threshold gain of this laser cavity will be

Gth = 25.4/cm. (37)

The extraction efficiency can be calculated as

ηext =
αm1

αc
=

19.6

25.4
= 77.1%. (38)

Compared to LED’s, this value is significantly higher.
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Photon Lifetimes

It is also worthwhile introducing the concept of a photon lifetime, τp. This is the temporal
equivalent of the cavity loss αc. Whereas 1

αc
is the average distance a photon travels before it

is lost (due to transmission, absorption or scattering losses), τp is the average time a photon
survives before it is lost to these processes. Therefore, we can define

τp =

(
1

αc

)(neff
c

)
(39)

where c is the speed of light in free space.

Similarly, we can also define a photon lifetime due to a specific loss mechanism. For example,
the photon lifetime due to the transmission through the output mirror can be defined as

τpm1 =

(
1

αm1

)(neff
c

)
, (40)

where αm1 is the mirror loss as defined in equation (24).

We can also write the extraction efficiency, equation (29), in terms of lifetimes:

ηext =
αm1

αc
=

τp
τpm1

. (41)

Quality Factor

Optical cavities are more general than Fabry-Perot cavities consisting of two parallel mirrors.
The parameter used for characterizing resonators is the quality factor (Q-factor). This is the
ratio between the energy stored in the cavity and the energy lost during one cycle of oscillation
expressed in radians. That is,

Q = 2π
Energy stored in the cavity

Energy lost per cycle . (42)

If we represent the initial energy in the cavity as Wo, using the photon lifetime τp, we can write
the energy decay as a function of time as

W (t) = Woe
− t

τp . (43)

Since the duration of one oscillation is 1
ν , where ν is the frequency of light, we can write

Energy lost per cycle = W
(
1− e

− 1
ντp

)
. (44)

Assuming that this energy loss is not too excessive (i.e., the cavity has a reasonably high Q),
then ντp ≫ 1. This results in

1− e
− 1

ντp ≈ 1

ντp
. (45)

Therefore, the expression for the Q-factor becomes

Q = 2π

(
W

W/ (ντp)

)
= ωτp (46)

where ω is the angular frequency of light. In other words, the quality factor is the number of
radians of oscillations that light undergoes in one photon lifetime.
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Example (Cont’d)

Continuing the previous example, if ng = 4.5, we can calculate the spacing between lasing lines.
This becomes:

∆λ =
λ2

2ngL
= 0.27 nm. (47)

The photon lifetime can be calculated as

τp =

(
1

αc

)(neff
c

)
=

(
1

25.4

)(
3.5

3× 1010

)
= 4.6 ps. (48)

Assuming an operating wavelength of 850 nm, the Q-factor of the cavity becomes

Q = ωτp = 2π
( c
λ

)
τp = 10, 200. (49)

Comparison with Other Gain Media

One of the distinct advantages of semiconductor lasers is its ability to produce large gain values.
Semiconductor gain values can easily exceed 500/cm. YAG crystals, for example, has a gain
of around 2/cm, and HeNe amplifiers have a gain of around 0.005/cm. As we can verify from
equation (30), a small length will require a high gain values. The high gain from semiconductors
is what allows lasers to be made in microchip configuration, while other laser systems require
much longer lengths. There is, however, a trade-off. The small volumes of semiconductor lasers
result in very high optical and electrical power densities inside the chip. High optical density
can lead to non-linearity and material damage. High electrical current densities can lead to
high temperatures. As a result, semiconductor lasers often have lower output power levels
than other types of lasers.
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Semiconductor Chip Lasers & Heterostructures

Figure 7: Typical slab configuration of semicon-
ductor diode lasers.

A semiconductor laser is typically constructed
as a slab PN junction diode with the current
flowing vertically through the slabs as shown
in Fig 7. The mirrors that create the opti-
cal cavity are normally the cleaved crystal
facets of the semiconductor chip. The na-
tive reflection from a semiconductor/air in-
terface is around 31%, as calculated in the
example above, but this value can be mod-
ified by adding thin film coatings on the
facets.

Figure 8: Single heterostructure used in early
semiconductor diode lasers.

The layer structure of the junction diode is
rarely made from the same semiconductor
material. Even though such junctions (homo-
junctions) are commonly used for electronic
components, the first generation of semicon-
ductor lasers made from homojunctions ex-
hibited very poor efficiencies due to the large
currents required to reach the gain threshold.
As a result, subsequent laser structures used
materials with dissimilar bandgaps (but with
the same crystal structure) to confine the car-
riers in the junction and reduce the current
required to reach threshold. These are known
as hetero-structures, one of which is shown in Fig 8. The p-type and n-type regions are made
from dissimilar semiconductors, such that there is a discontinuity in the conduction and va-
lence bands. This discontinuity is designed to block (or reduce) the diffusion of electrons and
holes, resulting in a large carrier concentration at the interface at very low forward currents.

Figure 9: Double Heterostructures (DH) semi-
conductor laser

Nevertheless, the single heterostructure as
shown in Fig 8, still had relatively poor car-
rier confinement. Due to diffusion, electrons
and holes spread out over a wide distance, re-
sulting in a relatively lower carrier concentra-
tion (which is the key factor that determines
optical gain). The next major development in
semiconductor lasers was the use of double
hetero-structures (DH), as shown in Fig 9. This
is a sandwich structure. The p-type and n-
type regions are made from a wide bandgap
material (such as AlxGa1−xAs) and the central
region is made up of a thin layer of a narrower
bandgap material (such as GaAs). This struc-
ture allowed the electrons and holes to be confined on both sides, which enabled very high
carrier concentrations to be built-up at relatively low forward currents. These structures lead
to some of the first room temperature semiconductor lasers. The photon energy was from the
central low-bandgap layer. In the case of GaAs, whose bandgap is 1.42eV, the emission wave-
length would be approximately 1.24

Eg
= 0.87µm.
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Figure 10: Separate confinement heterostruc-
ture (SCH) semiconductor laser

This DH semiconductor laser structure still
had a weakness. Even though the electrons
and holes were sufficiently confined, there
was no confinement of photons. As a result,
optical field was spread out over a large dis-
tance, and only a small portion of it over-
lapped with the gain region, resulting in a
poor overall gain of the optical field. This was
partially resolved by the introduction of the
Separate Confinement Heterostructure (SCH),
which is depicted in Fig 10. This actually con-
tains two double heterostructures (four inter-
faces). The central double-heterostructure
region is for confining electrons and holes as
before. The outer double-heterostructure is
for confining photons. The refractive index of
semiconductors is inversely related to the bandgap. The SCH structure, therefore, has a larger
refractive index in the central DH region. However, because the laser wavelength is typically
much longer than the width of the central DH region, a separate wider DH is needed to act as
an optical waveguide. This is the primary purpose of the outer DH. The optical field profile is
illustrated in Fig 10 by the yellow region. Even in the SCH structure, a large portion of the optical
field does not overlap the gain region (which is limited to central DH region). The fraction of
photons in the optical field that experience gain is referred to as the confinement factor. The
volumetric confinement factor, Γv , is defined as

Γv =
Gain Volume

Photon Volume =
Vγ

Vp
, (50)

where Vp is the volume of the optical mode and Vγ is the volume of the gain region. This can
also be expressed as an overlap integral between the optical field distribution ϕ (r) and the gain
distribution G (r):

Γv =

∫∞
0

|ϕ (r)|2 dr∫∞
0

|ϕ (r)|2 G (r) dr
. (51)

We can also define a cross-sectional confinement factor

ΓA =
Aγ

Ap
, (52)

where Aγ is the cross sectional area the gain region that overlaps with the optical field, and Ap

is the optical mode field area.

The confinement factor can be evaluated based on the geometry of the SCH structure (optical
waveguide) and the gain region. Typical values are in the range of 0.01 to 0.1. The confinement
factor has a profound impact on the threshold gain of the laser. Instead of the threshold gain
Gth being equal to the total cavity loss αc (equation (28)), it will now be higher by a factor of
1/ΓA,

AγGth = Apαc (53)

Gth =
Ap

Aγ
αc (54)

=
1

ΓA
αc. (55)

As a result, the threshold gain will typically be 10 to 100 times larger than the cavity loss αc.
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Example (Cont’d)

In the previous example, we calculated the cavity loss (and hence the threshold gain) to be
25.4/cm. If the confinement factor of this structure was specified as 0.05, the actual threshold
gain will become

Gth =
αc

0.05
= 508 /cm. (56)

How Optical Gain is Produced in a Semiconductor

Electrons in the valence band can absorb a photon and be elevated into the conduction band
creating an electron and a hole. Similarly, electrons already in the conduction band can re-
combine with the holes in the valence band to produce photons, annihilating the electron and
hole.

Absorption, by definition, is a stimulated process - it cannot occur without the presence of a
photon. Emission, on the other hand, can take on two forms - stimulated or spontaneous. An
electron and a hole can recombine at random to produce a photon. This is known as sponta-
neous emission. On the other hand, an existing photon can stimulate an electron to recombine
with a hole to produce a new photon, which is exactly the reverse of the absorption process.
This is known as stimulated emission.

Figure 11: Upward and downward transitions absorbing/emitting photons

The stimulated absorption process can be written as

↑ r12 (E) =
[
ρ−1
c (E2) + ρ−1

v (E1)
]−1

f (E1) [1− f (E2)] Φ (E) B12, (57)

where

• ↑ r12 (E) is the number of photons absorbed per unit time per unit volume per unit energy.

•
[
ρ−1
c (E2) + ρ−1

v (E1)
]−1 is the joint density of states, often written as ρJ (E), in the units

of number of states per unit volume per unit energy.

• f (E1) is the Fermi distribution in the valence band (i.e., the probability of a valence state
at energy E1 being occupied).

• [1− f (E2)] is the probability of a conduction band state with energy E2 being vacant.
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• E2 − E1 is the photon energy.

• Φ(E) is the photon density in the units of number of photons per unit volume per unit
energy.

• B12 is the transition rate constant.

The emission process can be written as

↓ r21 (E) = ↓ rst (E)+ ↓ rsp (E) (58)
= ρJ (E) f (E2) [1− f (E1)] Φ (E) B21︸ ︷︷ ︸

Stimulated Emission

+

ρJ (E) f (E2) [1− f (E1)] A21︸ ︷︷ ︸
Spontaneous Emission

. (59)

The joint density of states ρJ (E) is the combined density states between the conduction band
(ρc (E2)) and the valence band (ρv (E1)) that interacts with a photon energy of E = E2 − E1.
Densities are never added together to find the net density. Instead, they are added in inverse
to find the net density. This is not specific only to electronic bands; even the densities we
encounter in everyday life should be added in inverse.

Absorption and stimulated emission can be thought of as opposite effects. They both require
the presence of a photon. Spontaneous emission, on the other hand, occurs by itself without
any photon. However, there is no spontaneous absorption process - obviously one can’t absorb
a photon that does not exist.

At thermodynamic equilibrium, the upward and downward transitions will be balanced:

↑ r12 (E) =↓ r21 (E) , (60)

with the photon density determined by Planck’s law of black body radiation

Φ(E) =
24πE2

h3c3
1

eE/kT − 1
. (61)

Notice that we have used the units of density per unit energy for Φ(E), which leads to a slightly
nonstandard expression compared to the blackbody radiation spectrum that we discussed ear-
lier. This results in the following relationship between the transition rate coefficients:

B12 = B21 = B (62)

A21 = B21
24πE2

h3c3
= A. (63)

The spontaneous emission coefficient A has the units of inverse time. In terms of A, the B
coefficient becomes:

B =
h3c3A

24πE2
. (64)

The difference between the emission and absorption is the net increase in photon density per
unit time. This can be written as:

dΦ(E)

dt
=↓ r21 (E)− ↑ r12 (E) . (65)
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Substituting for ↑ r12 (E) and ↓ r21 (E) from equations (57) and (59), and neglecting the sponta-
neous emission component results in:

dΦ(E)

dt
= BρJ (E) [f (E2)− f (E1)] Φ (E) (66)

= G (E)Φ (E) , (67)

where G (E) is the photon gain per unit time per unit energy:

G (E) = BρJ (E) [f (E2)− f (E1)] . (68)

Spontaneous emission has a very small photon density compared to stimulated emission, hence
we have neglected it in the above expression.

Temporal gain and spatial gain are related as

G = G
(neff

c

)
(69)

where c is the speed of light and neff is the effective index of the medium.

The most important point to note in the gain expression is that the only factor that determines
if gain is positive or negative is f (E2) − f (E1). Under thermal equilibrium, the Fermi function
f (E2) will be smaller than f (E1). Therefore, the gain will be negative. In other words, the
semiconductor will exhibit net absorption under thermal equilibrium conditions. If we can get
f (E2) > f (E1), then it should be possible to get a positive optical gain. For this to happen,
the probability of an electron occupying a higher energy state E2 has to be larger than the
probability of an electron occupying a lower energy state E1. This is clearly an unnatural state,
which is why optical gain and lasing does not occur naturally. This is known as population
inversion. However, this condition can be induced inside a semiconductor, particularly in a PN
junction, by current injection.

Under thermal equilibrium, the electrons in the conduction band and the holes in the valence
band are characterized by a single Fermi level. However, under forward bias, we saw that the
Fermi level splits into EFN and EFP near the junction, producing an unbalanced electron-hole
distribution. The electron concentration is determined by EFN and the hole concentration is
determined by EFP . These are known as quasi-Fermi levels. The Fermi function corresponding
to these quasi-Fermi levels were

fc (E2) =
1

e(E2−EFN )/kT + 1
(70)

fv (E1) =
1

e(E1−EFP )/kT + 1
. (71)

81



Andrew Sarangan

Figure 12: Depiction of Fermi functions
under low level injection

Figure 13: Depiction of Fermi functions
under high level injection

Fig 12 illustrates three different Fermi functions. f (E)
is the Fermi function at thermal equilibrium. At the
junction, this will be at the intrinsic level Ei. fc (E) and
fv (E) are the Fermi functions that corresponds to the
quasi-Fermi levels under injection. fc (E) is the Fermi
function that applies for electrons in the conduction
band, and fv (E) is the Fermi function that corresponds
to the holes in the valence band. Both of these have dif-
ferent quasi-Fermi levels EFN and EFP , respectively.
The density of states functions ρc (E) and ρv (E), along
with the conduction and valence band edges Ec and
Ev are also shown. We should be able to verify from
this figure that the number of conduction band elec-
trons has risen compared to the thermal equilibrium
state, and the number of holes in the valence band has
also risen compared to the thermal equilibrium state.
However, population inversion has not been reached.
This is because at the lowest level of the conduction
band is higher than EFN , which makes the probabil-
ity of occupation smaller than 0.5. The highest level of
the valence band is lower than EFP , which makes the
probability of occupation higher than 0.5. This means
that the upper state (E2) clearly has a lower occupation
probability than the lower state (E1). This is known as
low-level injection.

Next, consider a higher level of injection. In this case,
the quasi-Fermi level EFN has crossed into and above
the lowest level in the conduction band, and EFP has
crossed into and below the highest level in the va-
lence band. This can only be achieved with very heav-
ily doped junctions such that the Fermi levels fall into
the bands. States in the region between Ec and EFN

will therefore have a higher probability of occupation
than the states in the region between Ev and EFP .
These regions are shown shaded in Fig 13. As a result,
f (E2) − f (E1) will be positive for transition between
these regions, resulting in optical gain for those pho-
tons..

We can summarize by saying that optical gain will be
produced if the injection is high enough to move the
quasi-Fermi levels past the band edges. All photons
with energy greater than the bandgap energy Eg , and
smaller than EFN − EFP will experience positive gain.

Since EFN − EFP = qVa, where Va is the applied volt-
age, we need a voltage that exceeds the bandgap volt-
age. This will result in an extremely large forward cur-
rent, most of which are collected by the terminals. Those that participate in optical emission
will be a tiny fraction of the carriers. As a result, early semiconductor diode lasers had very poor
efficiency, and had to be cooled aggressively to mitigate the heating due to the large current.
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Achieving Population Inversion in Diode Lasers

The maximum injection of both types of carriers occurs inside the space charge layer. However,
the maximum carrier concentration that can be reached due to injection cannot exceed the
majority carrier concentration on the injecting side. This occurs at Va = Vbi, also known as the
flat band condition. Therefore, in order to achieve population inversion, the n- and the p-type
regions have to be doped such that their Fermi levels fall inside the conduction and valence
bands, respectively. This usually requires very large values of doping. For instance, the carrier
concentration at the metallurgical junction can be written as

nj = NDe−(Vbi−Va)/(2Vt) (72)
pj = NAe

−(Vbi−Va)/(2Vt). (73)

As Va → Vbi the carrier concentration at the junctions will approach ND and NA. If ND and
NA correspond to EFN and EFP inside the conduction and valence bands, respectively, then
we can achieve population inversion at the metallurgical junction. This, unfortunately, is not
practical because as Va approaches Vbi, not only does the diode current flow equation becomes
less and less valid, the current flow also increases exponentially to impractical values. As a
result, the diode will be destroyed before any population inversion is achieved.

This is where heterostructure diodes became important. Heterostructures make it easier to
achieve population inversion at a smaller voltage and a smaller forward current. This concept
was introduced in Figs 8, 9 and 10.

Figure 14: Approximate energy band diagram of
a double heterostructure under zero bias

Fig 14 shows the energy band diagram of a
double heterostructure diode. This is the
same structure discussed previously in Fig 9.
Also, as discussed before, the carrier concen-
tration at the metallurginal junction will be
at its intrinsic value, and the Fermi level will
be at the center of the bandgap. The outer
regions (larger bandgap regions) are moder-
ately doped, and the narrow bandgap region
is typically left undoped.

Figure 15: Approximate energy band diagram of
a double heterostructure under forward bias

Under forward bias (low level injection), the
band structure will be as shown in Fig 15. The
important point worth noting is that the nar-
row bandgap at the center makes it easier to
achieve population inversion without having
to dope the p and p regions excessively, or
having to apply very large voltages. Due to
the smaller bandgap, the quasi-Fermi levels
are able to penetrate above the band edges
of that material even at relatively low forward bias voltages. There are additional benefits to
this structure as well. The smaller bandgap region acts like a carrier trap that significantly re-
duces the diffusion current. Nearly all of the forward current arises from recombination in the
smaller bandgap region. Therefore, we can approximate the forward current density as

J =
nit
(
eVa/Vt − 1

)
τ

(74)

where ni is the intrinsic carrier concentration in the smaller bandgap material, t is the thickness
of that material, and τ is the recombination life time in that material. This equation assumes
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that the carrier profiles inside the smaller bandgap region is flat, or alternatively that the diffu-
sion length of carriers is much larger than t. Since almost all of the carrier recombination and
photon emission takes place in this region, it is also referred to as the active region of the laser.

When stimulated emission is present, its effect will be to create an additional current compo-
nent. This will make the total current density equal to

J =
nit
(
eVa/Vt − 1

)
τ

+ t

∫ ∞

0

G (E)Φ (E) dE (75)

where G is the temporal gain, Φ is the photon density. This assumes that all of the stimulated
emission takes place in the active region.

Calculation of Gain in Semiconductors

Optical gain can be calculated from equation (68), or by using equation (69) it can be convered
to a gain per unit length coefficient. As a result,

G =
(neff

c

) h3c3A

24πE2
ρJ (E) [fc (E2)− fv (E1)] . (76)

Since gain should be expressed as a function of photon energy (or wavelength), we need to
convert E1 and E2 in terms of the photon energy E. We did this earlier under LEDs. The result
was:

E = Eg +
�h

2
k2

2mr
, (77)

where Eg is the material bandgap and mr is a reduced effective mass defined as

1

mr
=

1

mc
+

1

mv
. (78)

This allowed us to get an expression for E1 and E2 in terms of the photon energy E.

E2 = Ec + (E − Eg)
mr

mc
(79)

E1 = Ev − (E − Eg)
mr

mv
. (80)

Furthermore, we were able to express the quasi-Fermi levels as

EFN = Ei +∆EFN (81)
EFP = Ei −∆EFP , (82)

where Ei is the intrinsic level, and ∆EFN and ∆EFP are the shifts in the Fermi level due to the
applied bias. As a result, we can write the expressions for the Fermi distributions in terms of
the photon energy E:

fc (E2) =
1

e(Ec−Ei−∆EFN+(E−Eg)
mr
mc

)/kT + 1
(83)

fv (E1) =
1

e(Ev−Ei+∆EFP−(E−Eg)
mr
mv

)/kT + 1
, (84)
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and derive the complete expression for the gain coefficient:

G =
(neff

c

) Ah3c3

24πE2


π2�h

3

√
2m

3/2
c (E − Ec)

1/2︸ ︷︷ ︸
ρ−1
c (E)

+
π2�h

3

√
2m

3/2
v (Ev − E)

1/2︸ ︷︷ ︸
ρ−1
v (E)


−1

 1

e(Ec−Ei−∆EFN+(E−Eg)
mr
mc

)/kT + 1︸ ︷︷ ︸
fc(E2)

− 1

e(Ev−Ei+∆EFP−(E−Eg)
mr
mv

)/kT + 1︸ ︷︷ ︸
fv(E1)

 . (85)

The joint density of states can be simplified in terms of the reduced effective mass mr. In fact,
it has the exact form as the conduction or valence band expression:

ρJ (E) =

√
2m

3/2
r

π2�h
3 (E − Eg)

1/2
. (86)

As a result, the gain expression can be further simplified to:

G =

[√
2

3

][
Aneffc

2 (mr)
3/2

(E − Eg)
1/2

E2

]
 1

e(Ec−Ei−∆EFN+(E−Eg)
mr
mc

)/kT + 1︸ ︷︷ ︸
fc(E2)

− 1

e(Ev−Ei+∆EFP−(E−Eg)
mr
mv

)/kT + 1︸ ︷︷ ︸
fv(E1)

 . (87)
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Figure 16: Density of states and the
Fermi functions in the conduction and
valence bands.

Fig 16 shows the density of states in the conduc-
tion and valence bands as well as the Fermi func-
tions fc (E) and fv (E), using GaAs as the exam-
ple. The energy level has been arbitrarily set to
zero at the top of the valence band, such that the
bottom of the conduction band is at 1.42eV (which
is the bandgap energy). In this case Efc − Ec

and Ev − Efv have been chosen to be 0.1eV, such
that the Fermi energy falls 0.1eV above the con-
duction band minimum and 0.1eV below the va-
lence band maximum to ensure population inver-
sion.

The lower part of the figure shows the valence
band density of states ρv (E), and the correspond-
ing Fermi function fv (E). We can verify that pop-
ulation inversion will exist for transitions from all
states within 0.1eV above the conduction band mini-
mum to all states 0.1eV below the valence band maxi-
mum.

Figure 17: Calculated gain as a function of photon energy
for (Efc − Ec) = (Ev − Efv) = 1 meV and 10 meV, and
A−1 = 0.5ns.

Fig 17 shows the calculated gain
from equation (87), using (EFN − Ec) =
5meV and (Ev − EFP ) = 5 meV, with
1/A = 0.5 ns. The second curve
shows the gain when (EFN − Ec) =
(Ev − EFP ) = 10 meV. We can see
that this results in a positive gain
between the bandgap energy of 1.42
eV and (EFN − EFP ) (which is 1.43
eV and 1.44 eV for the two curves).
The bandwidth of the gain is exactly
equal to the quasi-Fermi level off-
sets (10 meV and 20 meV). The neg-
ative value of gain means that the
material exhibits a net absorption,
which occurs for all energies higher
than the quasi Fermi level offsets.
We can also see that the gain spectrum is similar to the one that we earlier assumed in Fig.
4 (except in that figure we sketched gain as a function of wavelength).
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The electron and hole concentrations that correspond to EFN − Ec = 5 meV and Ev − EFP =
5 meV can be found by integrating the density of states function with their respective Fermi
functions:

n =

∫ ∞

Ec

ρc (E) f (E) dE (88)

p =

∫ Ev

0

ρv (E) (1− f (E)) dE. (89)

For a bulk semiconductor, we had the density of states

ρc (E) =

√
2m

3/2
c

π2�h
3 (E − Ec)

1/2 (90)

ρv (E) =

√
2m

3/2
v

π2�h
3 (Ev − E)

1/2
. (91)

Although it is possible to make some approximations to express the integrals in equations (88)
and (89) in closed form, it is not difficult to carry out this integral numerically. Using a numerical
integration, we can calculate the electron and hole concentrations that correspond to the bias
condition of EFN − Ec = 5 meV and Ev − EFP = 5 meV. This results in

n = 4.4× 1017 cm−3 (92)
p = 7.04× 1019 cm−3. (93)

In this case the n and p concentrations are different. This is due to the difference in the density
of states between the conduction and valence bands. As a result, even though we had assumed
identical Fermi level offsetsEFN−Ec andEv−EFP , the carrier concentrations from the integrals
in equations (88) and (89) resulted in different values. Conversely, we could have started by
assuming that n = p, and worked out the values for EFN − Ec and Ev − EFP (which would be
different). This would have resulted in a slightly different gain profile as compared to Fig 17.

Figure 18: Peak gain vs electron (or hole) carrier concen-
tration in GaAs using A−1 = 0.5ns. Best fit values are:
G′

p = 2217/cm, nT = 2.4× 1018/cm3.

Additionally, since lasing action oc-
curs only near the peak value of the
gain, we can plot this peak value
from Fig 17 as a function of n (as-
suming p is equal to n). The result
is Fig 18. At low carrier concentra-
tions this can be modeled as a lin-
ear function,

Gp (n) = G′
p

(
n

nT
− 1

)
(94)

where nT is known as the trans-
parent carrier density, and G′

p is
the slope of the gain vs n curve,
also known as the differential gain.
At high concentrations, Gp (n) be-
comes nonlinear withn. In quantum-
wells and quantum-dots, which are
commonly used as the active medium in semiconductor lasers, this function has different char-
acteristics, primarily because their density of states functions have different forms. Therefore,
in order to keep our description general, we will leave the peak gain vs carrier concentration
function as Gp (n).
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Carrier Rate Equation

Now we can generalize the carrier and photon interactions via the rate equation model. These
are simply charge conservation and power conservation equations.

In the laser diode structure, the injected carriers are confined to the active region (smaller
bandgap region) whose volume is Vγ , and the photons are confined to a larger heterostructure
region (discussed earlier in Fig 10 under Separate Confinement Heterostructure) whose volume
is Vp.

From current continuity, we can write:

Vγ
dn

dt
=

I

q
− Vγ

∫ ∞

0

↓ r21dE − Vγ

∫ ∞

0

↓ rnrdE. (95)

This equation states that the difference between the rate of of electrons being injected into the
conduction band, and the rate of electrons being removed from the conduction band results in
a net increase in electrons.

Furthermore, the downward radiative transitions ↓ r21 consists of stimulated and spontaneous
emission, as

↓ r21 =↓ rst+ ↓ rsp. (96)

We can represent ↓ rsp and ↓ rnr as

↓ rsp =
n− ni

τr
(97)

↓ rnr =
n− ni

τnr
. (98)

From equation (67), total stimulated emission rate rst can be written as∫ ∞

0

↓ rstdE =

∫ ∞

0

G (E)Φ (E) dE. (99)

Since lasing takes place only near the gain peak and not everywhere there is gain, we can rep-
resent this integral by a small band of energy∫ ∞

0

G (E)Φ (E) dE = G (E) Φ̄ (E)∆E (100)

= G (E)
( c
n

)
Φ̄ (E)∆E (101)

As a result, the carrier rate equation (95) becomes

dn

dt
=

I

Vγq
−
(

c

neff

)
G (E)Φ (E)∆E − n− ni

τr
− n− ni

τnr
. (102)

For simplicity we can represent Φ(E)∆E = ϕ, and G (E)Φ (E)∆E = Gpϕ where Gp is the peak
gain. We can also combine the radiative and nonradiative lifetimes, and write the final carrier
rate equation as

dn

dt
=

I

Vγq
−
(

c

neff

)
Gp (n)ϕ− n− ni

τ
. (103)
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Photon Rate Equation

The conservation of power can be written as

Vp
d

dt
(Φ (E)∆E) = Vγ

∫ ∞

0

↓ rstdE + Vγ

∫ ∞

0

↓ rspdE − Vp

∫ ∞

0

Φ(E)

τp
dE (104)

which basically states that the difference between the photon amplification and photon loss is
the rate of increase in photon density. In this expression, τp is the photon lifetime. It is related
to the total cavity loss as defined by equation (39).

Additionally, using the previous derivations and approximations, we can rewrite this equation
as

Vp
dΦ(E)∆E

dt
= Vγ

(
c

neff

)
G (E)Φ (E)∆E + Vγ

n

τr
− Vp

Φ(E)∆E

τp
. (105)

The term n
τr

is the spontaneous emission rate. This is a random emission of photons in all direc-
tions and polarizations. As we saw in the study of light emitting diodes, only a very small fraction
of these photons will exit the cavity through the output mirror. We will represent this fraction
(extraction efficiency of spontaneous emission, or spontaneous emission coupling factor) by
the symbol Θ. Therefore, equation (105) becomes modified to

dΦ(E)∆E

dt
= Γ

(
c

neff

)
G (E)Φ (E)∆E + ΓvΘ

n− ni

τr
− Φ(E)∆E

τp
, (106)

where Γv is the volumetric photon confinement factor defined earlier in equation (50). Again,
we can set Φ(E)∆E = ϕ, and G (E)Φ (E)∆E = Gpϕ. This allows equation (106) to be written
as

dϕ

dt
= Γv

(
c

neff

)
Gp (n)ϕ+ ΓvΘ

n− ni

τr
− ϕ

τp
. (107)

This is the photon rate equation. Note that we have included τ in the carrier rate equation (103),
but only τr is included in the photon rate equation (106). This is because all recombination
processes contribute to the decay in the carrier density, but only the radiative decay processes
contribute to an increase in photons in the laser cavity.

The photon life time τp includes all loss mechanisms in the cavity. As defined in equations
(39) and (40), the ”useful” loss is due to τpm1. Everything else contributes to an unrecoverable
photon loss. Therefore, we can write the output power as

Po = hν
ϕVp

τpm1
. (108)

Steady State Solution of the Rate Equations

The carrier rate equation (103), and the photon rate equation (107) are coupled. Solving these
two equations is not trivial, especially if time-varying currents are involved. However, we can
solve for the steady-state condition if we set the derivatives dn

dt and dϕ
dt to zero. This results in

I

Vγq
−
(

c

neff

)
Gp (n)ϕ− n− ni

τ
= 0 (109)

Γv

(
c

neff

)
Gp (n)ϕ+ ΓvΘ

n− ni

τr
− ϕ

τp
= 0. (110)
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The solution we are seeking is for the photon density ϕ as a function of the input current I . Even
this is non-trivial unless we make a few additional assumptions. We can identify two cases:

• Below lasing threshold: is when the current is low and the gain is below the threshold to
starting the lasing action. As a result, the current due to recombination will dominate the
overall current, resulting in

Gp (n)ϕ ≪ n− ni

τ
. (111)

• Above lasing threshold is when the current due to stimulated emission far exceeds the
recombination current. This can be expressed as:

Gp (n)ϕ ≫ n− ni

τ
. (112)

For below threshold, we can rewrite equation (109) as

n− ni ≈ τ
I

Vγq
. (113)

We can substitute this into equation (110) to produce

ϕ = ΓvΘ
ττp
Vγτr

I

q
. (114)

Combining this with equation (108), we can get an expression for the output power

Po = Θ

(
hν

q

)(
τ

τr

)(
τp

τpm1

)
I. (115)

Additionally, we have hν
q = Vg (equivalent voltage of the bandgap), and τ

τr
= ηi (internal quan-

tum efficiency). We also defined the extraction efficiency ηext in equation (29), in terms of pho-
ton lifetime as well as in terms of loss coefficients. Therefore, the responsivity (optical power
out/electrical current in) becomes

R = Θ Vg ηext ηi. (116)

Since the spontaneous emission coupling factor Θ is a very small number, this will result in a
very small responsivity value. This is the expected behavior for lasers below their lasing thresh-
old.

Lasing threshold will be reached when the gain is equal to the total cavity losses.

Gp (nth) =
αc

Γv
, (117)

where nth is the carrier density at the threshold gain. From this, we can get the threshold
current. Using equation (109) and using the below-threshold approximation, we can get

Ith = q
Vγnth

τ
. (118)

For above threshold operation, we can write equation (109) as(
c

neff

)
Gp (n)ϕ ≈ I

Vγq
. (119)
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Substituting this into equation (110), we can get

Γv
I

Vγq
=

ϕ

τp
. (120)

Combining this with equation (108) results in

Po =

(
hν

q

)(
τp

τpm1

)
I. (121)

Since this is for current values above the threshold current, we can offset the injection current
by Ith and write it as

Po =

(
hν

q

)(
τp

τpm1

)
(I − Ith) (122)

= Vg ηext (I − Ith) . (123)

and the responsivity becomes:
R = Vg ηext. (124)

This responsivity is significantly larger than equation (116), because it does not contain the
spontaneous emission coupling factor Θ, or the internal quantum efficiency ηi.

External Quantum Efficiency

In addition to responsivity, we can also define an external quantum efficiency, ηe. This is the
number of photons produced for each injected electron. From the above description, we can
get the following results:

ηe = Θ ηext ηi (below threshold) (125)
ηe = ηext (above threshold). (126)

Example (Cont’d)

Let’s reconsider the example from before, which was a semiconductor laser with L = 300µm,
λ = 0.85µm, neff = 3.5, αs + αa = 5/cm. We calculated αc = 25.4/cm, and αm1 = 19.6/cm. This
would result in an extraction efficiency

ηext =
τp

τpm1
=

αm1

αc
= 0.77. (127)

Furthermore, lets assume that the the internal quantum efficiency is ηi = 0.5, and the total
recombination lifetime is τ = 2ns. Also assume that the spontaneous emission coupling factor
is Θ = 0.01. We can now calculate the responsivity below threshold, using equation (116),

R = Θ Vg ηext ηi = 0.01× 1.42× 0.77× 0.5 = 5.46 mW/A. (128)

Above threshold, the responsivity becomes

R = Vg ηext = 1.42× 0.77 = 1.09 W/A, (129)
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which as expected, is significantly higher than the below-threshold value.

The threshold current can be calculated if we know a few additional parameters. The con-
finement factor was given as Γv = 0.05, and the gain volume (width × height × length of the
gain region) is Vγ = 5µm × 0.1µm × 300µm = 150µm3. Following the calculated results pre-
sented in Fig 18, we can look up the carrier density corresponding to the required gain value of
Gth = αc

Γ = 508/cm. This is 3.3 × 1018 cm−3. Then we can use equation (118) to calculate the
threshold current:

Ith = q
Vγnth

τ
= 39 mA. (130)

Figure 19: Light-current (L-I) curve of
the laser diode example.

The light-current (L-I) curve of this laser diode is shown
in Fig 19, which shows two distinct regions for below-
threshold, and above-threshold operation. In prac-
tice, the transition from below-threshold to above-
threshold will not be abrupt, nor would the above-
threshold responsivity remain constant. At high cur-
rents, the responsivity will decline due to internal heat-
ing. The effects of increasing temperature on gain can
be verified from equation (87). Additionally, the spon-
taneous emission coefficient, A, will also decline with
increasing temperature. This has the effect of reducing
the internal quantum efficiency. The results of these
effects are shown by the dashed red line in Fig 19.

We can also note that the carrier concentration will in-
crease linearly with current, as determined by equa-
tion (113). When the laser is above threshold, the car-
rier concentration will remain pinned at the threshold
value as per equation (117). All of the injected carrier
above that level will go to support stimulated emission. Using the example parameters from
above, we can calculate these carrier density values. For below-threshold operation:

n = τ
I

Vγq
. (131)

Figure 20: Carrier concentration vs in-
jected current for the laser diode ex-
ample.

The carrier density will saturate at the threshold value
of 3.3 × 1018 cm−3. The behavior of carrier concentra-
tion vs current is shown in Fig 20. Similar to the L-I
curve, we can identify two distinct regions of operation
- a linearly rising carrier density below-threshold, and a
constant value above-threshold. In practice, however,
the carrier density will not remain perfectly flat above
threshold. As discussed previously, the peak gain value
will decline due to internal heating. This will produce a
slight increase in the carrier density with injected cur-
rent above-threshold.

Figure 21 shows the gain versus current curve for the
same example. Because of the linear relationship be-
tween carrier density and peak gain (which was dis-
cussed in Figure 18) it follows the same behavior as Fig-
ure 20. Initially, the gain value increases as the current
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increases. Once threshold is reached, it remains constant at the threshold gain value. The
additional current beyond threshold goes towards increasing optical output power.

Figure 21: Gain vs injected current for the laser diode example.

Small-Signal Current Modulation of Laser Diodes

One of the distinct advantages of diode lasers as compared to other lasers (such as gas lasers,
fiber lasers and other optically pumped solid state lasers) is its ability to be directly modulated
by the input current. This allows analog or digital information to be encoded into the light out-
put, allowing it to be utilized as an optical transmitter in communication systems. In the case of
LEDs, the modulation bandwidth was determined primarily by the total recombination lifetime
τ . With laser diodes, carrier lifetime does not play a role in the maximum modulation band-
width. Instead, photon lifetime, differential gain and photon density are the primary factors
that determine its modulation bandwidth. With proper design, it is possible to get modulation
bandwidths well into the GHz range. We can study this effect by solving the two rate equations
that we derived earlier. We will also assume that the laser is biased well above threshold such
that the effects of sponatenous emission can be ignored. The two rate equations then become:

dn

dt
=

I

Vγq
−
(

c

neff

)
Gp (n)ϕ (132)

dϕ

dt
= Γ

(
c

neff

)
Gp (n)ϕ− ϕ

τp
. (133)

The solution we seek is to obtain an expression for ϕ due to a time varying current I . Unfortu-
nately, the term Gp (n)ϕ contains a product of n and ϕ which make these equations not only
coupled, but also nonlinear. However, we can find a solution if we make certain approxima-
tions to linearize these equations. We will assume a small signal imposed on the dc operating
condition, such that

I = Io + δIejωt (134)
n = no + δnejωt (135)

Gp = Gpo + δGpe
jωt (136)

ϕ = ϕo + δϕejωt, (137)
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where Io, no and ϕo satisfy the steady state condition discussed in the previous section. Even
though the carrier density was shown to level off at nth and the gain at Gth, under modulation,
they experience transient excursions above these values. Therefore, the values for δn and δGp

in equations (135) and (136) will be nonzero.

The DC operating point satisfies the following conditions:

Io
Vγq

−
(

c

neff

)
Gpoϕo = 0 (138)

Γ

(
c

neff

)
Gpoϕo −

ϕo

τp
= 0, (139)

⇒ Γ

(
c

neff

)
Gpo =

1

τp
. (140)

Substituting the small signal modulations (134) - (137) into the rate equations (132) and (133)
results in:

dn

dt
=

Io + δIejωt

Vγq
−
(

c

neff

)(
Gpo + δGpe

jωt
) (

ϕo + δϕejωt
)

(141)

dϕ

dt
= Γ

(
c

neff

)(
Gpo + δGpe

jωt
) (

ϕo + δϕejωt
)
−
(
ϕo + δϕejωt

)
τp

. (142)

Next, we will remove all terms involving the product of two small signal terms, such as δGpδϕ.
This also removes the nonlinear terms containing twice the frequency components:

dn

dt
=

Io + δIejωt

Vγq
−
(

c

neff

)(
Gpoϕo +Gpoδϕe

jωt + ϕoδGpe
jωt
)

(143)

dϕ

dt
= Γ

(
c

neff

)(
Gpoϕo +Gpoδϕe

jωt + ϕoδGpe
jωt
)
−
(
ϕo + δϕejωt

)
τp

. (144)

We can also group the terms that contain the dc solutions, resulting in:

dn

dt
=

Io
Vγq

+

(
c

neff

)
Gpoϕo︸ ︷︷ ︸

Eqn (138)

+
δIejωt

Vγq
−
(

c

neff

)(
Gpoδϕe

jωt + ϕoδGpe
jωt
)

(145)

dϕ

dt
= Γ

(
c

neff

)
Gpoϕo −

ϕo

τp︸ ︷︷ ︸
Eqn (140)

+Γ

(
c

neff

)(
Gpoδϕe

jωt + ϕoδGpe
jωt
)
− δϕejωt

τp
. (146)

Since equations (138) and (140) are equal to zero, this results in further simplifications of the
above two equations:

dn

dt
=

[
δI

Vγq
−
(

c

neff

)
(Gpoδϕ+ ϕoδGp)

]
ejωt (147)

dϕ

dt
=

[
Γ

(
c

neff

)
(Gpoδϕ+ ϕoδGp)−

δϕ

τp

]
ejωt. (148)

Clearly, these two equations are coupled. However, it is possible to unlink them by eliminating
n and expressing the one equation in terms of ϕ only. This can be done by taking the second
derivative of the photon rate equation and substituting the carrier rate equation to eliminate
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all terms involving n. Taking the derivative of equation (148), and substituting (140) we can get:

d2ϕ

dt2
= jω

[
Γ

(
c

neff

)
(Gpoδϕ+ ϕoδGp)−

δϕ

τp

]
ejωt (149)

−ω2δϕejωt = jω

[
Γ

(
c

neff

)
Gpoδϕ+ Γ

(
c

neff

)
ϕoδGp −

δϕ

τp

]
ejωt (150)

jωδϕ =

[
�
��
δϕ

τp
+

ϕoδGp

Gpoτp
−

�
��
δϕ

τp

]
. (151)

Next, since the peak gainGp (n) is a function of n, we can express the small signal gain amplitude
δGp in terms of δn:

δGp = G′
pδn, (152)

where the prime represents
G′

p =
dGp

dn
. (153)

G′
p is also known as the differential gain because represents the derivative of gain with respect

to carrier concentration. Substituting this into equation (151),

jωδϕ =

(
G′

p

Gpo

)(
ϕo

τp

)
δn. (154)

Next, we can substitute the time dependence of dn
dt into equation (147), along with (140) to get:

jωδn =
δI

Vγq
−
(

c

neff

)
(Gpoδϕ+ ϕoδGp) (155)

=
δI

Vγq
− δϕ

Γτp
−
(

ϕo

Γτp

)(
G′

p

Gpo

)
δn (156)

δn

[
jω +

(
ϕo

Γτp

)(
G′

p

Gpo

)]
=

δI

Vγq
− δϕ

Γτp
(157)

δn =

δI
Vγq

− δϕ
Γτp

jω +
(

ϕo

Γτp

)(
G′

p

Gpo

) . (158)

Substituting (158) into (154) results in:

jωδϕ =

(
G′

p

Gpo

)(
ϕo

τp

) δI
Vγq

− δϕ
Γτp

jω +
(

ϕo

Γτp

)(
G′

p

Gpo

)
 . (159)

Now the entire equation is in terms of ϕ only. We can divide by δϕ to get:

jω =

(
G′

p

Gpo

)(
ϕo

τp

) δI/q
δϕVγ

− 1
Γτp

jω +
(

ϕo

Γτp

)(
G′

p

Gpo

)
 . (160)

Then we can re-arrange the terms:

−ω2 + jω

(
ϕo

Γτp

)(
G′

p

Gpo

)
+

(
G′

p

Gpo

)(
ϕo

τp

)(
1

Γτp

)
=

(
G′

p

Gpo

)(
ϕo

τp

)(
δI/q

δϕVγ

)
(161)

−ω2

(
τp
ϕo

)(
Gpo

G′
p

)
+ jω

(
1

Γ

)
+

(
1

Γτp

)
=

(
δI/q

δϕVγ

)
(162)
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The ratio of small signal photons to small signal carrier injection rate can therefore be expressed
as:

qδϕ

δI
=

1(
Vγ

Γτp

)
− ω2Vγ

(
τp
ϕo

)(
Gpo

G′
p

)
+ jω

(
Vγ

Γ

) . (163)

Since the confinement factor is Γ =
Vγ

Vp

qδϕ

δI
=

1[(
Vp

τp

)
− ω2Vγ

(
Gpo

G′
p

)(
τp
ϕo

)]
+ jωVp

(164)

δϕ

δI

(
qVp

τp

)
=

1

1−
(

ω
ωr

)2
+ jωτp

(165)

where we have defined
ω2
r =

(
1

Γ

)(
ϕo

τ2p

)(
G′

p

Gpo

)
. (166)

ωr is known as the relaxation frequency of the laser cavity. It is an important paramater because
it is entirely controlled by the laser cavity design. It is related to the photon density at the DC
bias (ϕo), the differential gain (G′

p) as well as other design parameters such as total cavity loss
(τp) and confinement factor (Γ) and the DC gain (Gpo).

In equation (166), the photon density ϕo is the DC bias value. Hence, it can be more conveniently
expressed in terms of the DC bias current above threshold I − Ith. Using the dc rate equations
(138) and (140):

ϕo =
(Io − Ith)

qVp
τp. (167)

Therefore, the relaxation oscillation frequency can also be described in terms of the dc bias
condition:

ω2
r =

(
G′

p

Gpo

)(
Io − Ith
qVγτp

)
. (168)

Furthermore, the output optical power is related to the photon density, which we defined earlier
via equation (108). Using this, we can get

δP

δI
=

(
hν
q

)(
τp

τpm1

)
1−

(
ω
ωr

)2
+ jωτp

(169)

The term in the numerator is the DC responsivity, R that we defined in equation (124). Therefore,
we can define the AC responsivity r as:

r =
δP

δI
=

R

1−
(

ω
ωr

)2
+ jωτp

. (170)

Finally, the magnitude of this response can be written as

|r| = R√(
1− ω2

ω2
r

)2
+ ω2τ2p

. (171)

We can see from this expression that the responsivity when ω = 0 is exactly equal to the DC
responsivity R. At the resonance frequency of ωr, the responsivity reaches a peak value of
R/ (ωrτp). At frequencies higher than ωr, the responsivity will decline similar to a LED.
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Example (Cont’d)

Continuing the example from the previous sections, we can now calculate the modulation fre-
quency response of the laser. We had αc = 25.4/cm, and neff = 3.5. From this, we can get

τp =
neff
cαc

(172)

= 4.58 ps. (173)

We will assume a DC bias current of 250 mA. The calculated threshold current was 39 mA, Vγ =
150µm3, and Γ = 0.05. Next we need to evaluate the ratio between the gain at the DC bias point,
Gpo and the differential gain G′

p. For this, we refer to the calculate gain vs carrier density plot in
Fig 18. At 250 mA, we will be well above threshold. The threshold carrier density was previously
calculated as 3.3 × 1018 cm−3. The gain value corresponding to this carrier density is 508/cm.
The slope at this bias point can also be calculated from the gain data, which is 1.7× 10−18cm3.

Figure 22: Peak gain vs carrier concentration and the differential gain at the bias point.

Using these values, we can calculate the relaxation oscillation angular frequency by utilizing
equation (168):

ωr =

√(
G′

p

Gpo

)(
Io − Ith
qVγτp

)
(174)

= 56.9× 109 rad/s, (175)

which corresponds to a frequency of

fr = 8.8 GHz. (176)

This can often be considered the useful bandwidth of the laser. However, that does not prevent
the use of this laser at higher modulation frequencies.

The relaxation oscillation frequency is a resonance effect between the carrier density and the
photon density, coupled through the gain coefficient. At this resonance frequency, we can see
an increase in responsivity. Beyond this frequency, the responsivity will decline rapidly, pri-
marily due to the photon lifetime τp. In cases where 1/τp is significantly smaller than the ωr,
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Figure 23: Calculated dynamic responsivity vs modulation frequency for 250mA and 500mA bias.

the resonance effect may not be seen at all. In that sense, τp can be seen a contributing to a
damping effect to a resonance frequency of ωr.

Factors Affecting the Modulation Frequency of Lasers

In LED’s we saw that the only parameter that determined the maximum modulation frequency
was the carrier lifetime τ . This is a basic material property. Therefore, it is not possible to
increase this frequency by design methods. In laser diodes, the maximum modulation frequency
is determined by a number of design factors that can be engineered.

The photon lifetime is the primary factor that affects the modulation frequency. This is de-
termined by αc, which is a combination of intrinsic losses, mirror reflectivities and the cavity
length. A higher value for αc (lossier cavity) would result in a higher modulation bandwidth.
However, this does not mean that a lossier cavity is necessarily better. The trade-off between
intrinsic losses and output mirror loss has to be managed such that a low photon lifetime τp is
achieved without compromising the external quantum efficiency or responsivity. For example,
simply increasing the absorption and scattering losses αa+αs will reduce the external quantum
efficiency. However, reducing the cavity length and reducing output mirror reflectivity will result
in a smaller τp without degrading the quantum efficiency. However, this would also increase the
threshold current, so obviously this process requires a number of design considerations that
must be weighed carefully.

The relaxation oscillation frequency is also an important factor that contributes to the overall
modulation bandwidth. This can be increased, for example, by operating the laser at a higher
bias current it is possible to increase the frequency response. Its effect is illustrated in Fig
23, where we have shown two curves corresponding to a bias current of 250 mA and 500 mA
(threshold current is 41 mA).
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The differential gain factor G′
p

Gpo
also plays an important role. Although this is primarily a material

effect, it too can be modified by engineering the bandstructure of the gain material. Quantum
well lasers, for example, exhibit a step-like density of states function instead of the parabolic
function described in Fig 13. This results in a larger change in Fermi level for a given change in
carrier density, resulting in a higher differential gain factor. Combining all of these effects, it
is possible to design diode laser structures that exhibit modulation frequencies well into the
GHz range with low threshold currents. These are commonly used in fiber optic communication
systems.

Diode Laser Configurations

Diode lasers are fabricated by growing epitaxial thin films on a lattice-matched substrate. There-
fore, all the layers that make up the device will be planar in nature. However, the resonator
can be configured to exhibit two distinctly different geometries edge-emitting configuration,
or vertical-emitting configuration. Within each configuration, there are a number of variations.
Some of these are discussed below.

Broad-Area (BA) Lasers

This is the simplest and most used semiconductor laser configuration for general applications.
As discussed in Fig 7, this is a Fabry-Perot resonator consisting of two cleaved facets that form
the mirrors. Also, as discussed in Fig 10, the optical field will be confined by the separate con-
finement heterostructure (SCH) while the electrons will be confined within the gain region (ac-
tive region). The SCH is generally designed to support a single optical mode in order to increase
the optical confinement factor Γ. However, in the lateral direction there is no optical confine-
ment (Fig 24). The width can range from a few tens of microns to hundreds of microns. The gain
volume Vγ and the optical volume Vp will scale with the width, while the confinement factor Γ
will remain nearly the same. The large volume allows high optical powers to be obtained from
this laser.

One of the main drawbacks of this structure is the lack of lateral beam control. The lateral direc-
tion can be considered as a multi-mode waveguide with a very large number of optical modes.
Each mode will have a different field distribution. The output beam will therefore consist of
many different optical modes, each of them incoherent with one another. As a result, the beam
will have poor spatial coherence. When focused in an optical system, each mode will come
to a focus at different points in space, making it difficult to achieve diffraction-limited perfor-
mance. Furthermore, due to the lack of a dielectric waveguide structure in the lateral direction,
the mode distribution will be highly influenced by the temperature profile and carrier distribu-
tion, both of which affect the refractive index. This can result in an unstable beam that can shift
and change shape depending on the operating conditions. The light-current curve will exhibit
discontinuities, and effects such as self-focusing and hot spots (also known as filamentation)
can create instabilities.

In the spectral domain, the output will contain a large number of Fabry-Perot modes, similar
to the one shown in Fig 6. However, since each lateral mode will have its own effective index
neff and group index ng , this will result in a less defined distribution of spectral emission lines.
Nevertheless, the location of these peaks will be largely determined by the location of the gain
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Figure 24: Fabry-Perot Broad Area Laser

peak, which is primarily determined by the material bandgap and population inversion.

The output beam will generally be thin (coincident with the single-mode SCH layer), and wide
(due to the large width). This results in the bean being significantly elliptical in the near-field
(thin and wide). In the far field, this translates to a larger divergence in the vertical direction
and a smaller divergence in the horizontal direction, as illustrated in Fig 24.

Figure 25: TO package laser with the cover cut away. Source: wikiwand.com

Broad-area lasers are inexpensive to manufacture (compared to the other types of lasers dis-
cussed next). They can be thought of as an LED with much higher extraction efficiency, and a
much higher brightness (smaller beam divergence). They are used where high optical powers
are required with less stringent requirements on the spatial coherence of the beam. Example
applications include pumping other lasers, such as YAG and fiber lasers. Laser pointers, flash
ladar as well as numerous other illumination applications also utilize broad-area lasers.

Waveguide Lasers

Lateral waveguide mode control can be introduced into a laser chip by a number of different
techniques. One technique is to randomize the crystal structure in all areas except the waveg-
uide region. This is done by ion implantation. Ions are driven into the semiconductor laser
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Figure 26: Ion Implanted Gain Guided Waveguide Laser

which cause impact damage, as shown in Fig 26. Therefore, these areas will not be able to pro-
duce optical gain. Only the central striped region will be able to support lasing. This is referred
to as a gain-guided laser structure, because technically the optical mode is not defined by a
dielectric discontinuity, but instead by a gain discontinuity. Nevertheless this results in a rea-
sonably well defined lateral mode control. However, since the outside regions will now have a
higher scattering and absorption loss, the overall cavity loss αc will become higher, leading to
a lower external quantum efficiency.

Figure 27: Striped Contact Gain Guided Laser

Another type of gain guidance can be achieved
by patterning the top electrical contact as a
narrow stripe. This will produce current in-
jection along a narrow stripe, and hence pop-
ulation inversion will be achieved only within
this stripe. This leads to a similar effect to
that of the ion implanted structure. However,
the carriers can diffuse laterally, which will
broaden the stripe width which makes it dif-
ficult to precisely control the lateral mode.
Carrier diffusion can also vary with injection
conditions, which will make the beam profile
dependent on the current level. Neverthe-
less, since there is less crystal damage in this structure compared to ion implantation, so it
can lead to an improved external quantum efficiency.

Figure 28: Ridge Waveguide Laser

A better method of controlling the lateral
mode is by producing a strong dielectric con-
trast. This can be achieved with a ridge
waveguide configuration. The top SCH region
can be etched during fabrication to provide a
relatively strong mode control in the lateral
direction. Because the primary mode control
is by the refractive index geometry, it is rela-
tively immune from instabilities due to vary-
ing currents and temperatures. Nevertheless,
it still has some aspects of gain guidance be-
cause the bottom SCH is unpatterned. Hence,
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the spatial profile of the carrier injection does have some role in the optical mode.

Far Field Profile of Edge Emitting Lasers

All semiconductor lasers are fabricated as epitaxial thin film structures. During growth, it is
possible to precisely control the film thicknesses down to a few nanometers. As a result, the
SCH layer structure can be easily made to support a single optical mode. The lateral geometry,
on the other hand, is achieved by lithographic patterning, which has a much worse resolution,
on the order of a micron. As a result the waveguides are nearly always wider than their height.
It is common for a waveguide structure to have 0.5µm thickness and 10µm width. This results
in a near-field beam profile that is highly elliptical, as illustrated in Fig 28. This is a general
characteristic that is observed in nearly all edge-emitting lasers except vertically emitting lasers
(such as VCSELs). This characteristic also leads to an elliptical divergence pattern that is fast in
the vertical axis and slow in the horizontal axis. These are noted as θ∥ and θ⊥. Typical numbers
are θ∥ = 9◦ and θ⊥ = 17◦ (from Thorlabs L840P200 840nm Laser Diode). Working with such
beams require astigmatic lenses, which are expensive and difficult to align.

A circular beam shape will be far more attractive, but it is difficult to achieve using an edge-
emitting configuration. However, in surface-emitting configurations where the beam output is
normal to the surface of the semiconductor, it is possible to get a nearly circular beam. The
Vertical Cavity Surface Emitting Laser (VCSEL) is an example of this.

Distributed Bragg Reflector (DBR) Lasers

As discussed previously, the SCH waveguide structure is typically designed to be single mode.
Even if the lateral structure is designed to be single mode (as in the ridge waveguide laser), in
the longitudinal direction there will be a large number of modes (thousands) spaced by ∆λ =
λ2

2ngL
. Which of these modes will actually lase will be determined by the gain spectrum of the

semiconductor. Typically a few dozen modes close to the gain peak will be able to reach their
threshold gain. In some special circumstances a single longitudinal mode may lase, but it not
be dynamically stable. It will quickly switch to another mode as conditions change, such as
current or temperature. Hence these are referred to as multi-mode lasers.

Figure 29: First Order Distributed Bragg Reflec-
tion (DBR) Laser

To achieve a a spatially and spectrally coher-
ent beam, one needs to achieve not only a
single lateral mode, but also single longitudi-
nal mode. This is necessary in some commu-
nication applications, especially those that
employ coherent detection techniques. It is
obviously not possible to achieve this with
a Fabry-Perot laser structure. Reducing the
cavity length to a sub-wavelength regime is
clearly not possible because it will raise the
threshold gain to unrealistically large values
(see equation (30)). However, if we can re-
place the mirror with a frequency-selective mirror, then we can at least reduce the number
of longitudinal modes. This is the main idea behind DBR lasers.

102



Andrew Sarangan

Distributed Bragg Reflectors (DBR) use a periodic structure (grating) to generate reflection. This
is a fundamentally different way of producing reflection compared to a discrete mirror. It is
essentially a diffraction grating, but it is designed such that the first order diffraction propagates
backwards to act like a reflected beam. Two gratings are etched into the SCH regions of the
waveguide on either end of the cavity, as shown in Fig 29.

Part of the waveguide mode will sample the grating and be reflected back into the cavity similar
to a discrete mirror. This effect can be conveniently depicted in a scattering diagram as shown
in Fig 30. All of the possible scattered modes are represented by a circle whose radius is the
propagation constant β of the waveguide mode. The forward traveling waveguide mode is on
the positive axis with a value of +β, and the backward traveling waveguide mode is on the
negative axis with a value of −β. The grating etched into the waveguide couples the two modes
together. The coupling vector K is the distance in k-space between +β and −β. Therefore, the
grating vector has to be

K = 2β. (177)

Figure 30: Scattering diagram of a first order diffraction
from a grating producing reflection

Since K = 2π
Λ where Λ is the grat-

ing pitch, and β = 2π
λ neff where λ is

the wavelength and neff is the effec-
tive index of the waveguide mode,
we can get

Λ =
λ

2neff
. (178)

For example, consider a GaAs waveg-
uide with λ = 850nm, neff = 3.4. The
required grating pitch that will pro-
duce a reflection in the waveguide
will be 123.5nm.

Figure 31: Scattering diagram of a second order grating
producing the reflection feedback

Alternatively, we can also create a
long pitch grating (smaller K) such
as K = β. This will produce a
guided mode that falls exactly at the
center of the circle. However, since
the wave vector of the optical wave
has to be preserved, the diffracted
field that corresponds to this mode
will appear at the top of the circle,
as depicted in Fig 31. This is a ra-
diation mode that will be directed
upwards from the waveguide.

While the first order is directed ver-
tically away from the grating, the
second order diffraction will lead to
the backward propagating mode with −β. Therefore, in this case, there will be two diffraction
orders. The first diffracted order will couple light away from the grating normal to the surface.
The second order will couple with the reflected mode. Therefore, this grating can be considered
as a combined reflector/out-coupler, as depicted in Fig 32.
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Figure 32: Second Order Distributed Bragg Reflection
(DBR) Laser

The strength of reflection from this
grating is related to the refractive
index contrast between the high
and low regions of the grating,
∆neff, and the length of the grating.
The principle involves the applica-
tion of coupled-mode theory, which
we will not pursue here, but the re-
flection can be approximately rep-
resented as

R = tanh2
(κL) , (179)

where κ is the coupling coefficient which is related to the effective index contrast as

κ =
π∆neff

λ
, (180)

and L is the length of the grating.

For example, if small grooves are etched into the top cladding (SCH) region such that ∆neff =
0.01, and the length of the grating is 200µm, we can get a maximum reflection of 99.6% at
the Bragg wavelength (the Bragg wavelength is defined by the condition that satisfies equa-
tion (178)). More importantly, this reflection is a strong function of wavelength. The reflection
value of tanh2

κL occurs at the Bragg wavelength, but it quickly declines at other wavelengths.
The bandwidth of reflection depends on the coupling coefficient κ. For example, the reflection
bandwidth of a 200µm long grating with ∆neff = 0.01 designed for a Bragg wavelength of 850nm
is shown in Fig 33 (which was derived from coupled-mode theory). We can see that the peak
reflection of 99% exists only within a narrow spectral bandwidth of around 2nm, and declines
rapidly on both sides. The phase of the reflection is also shown on the right hand axis of Fig
33. Within the reflection band, the phase gradually changes from 0 to ±π

2 from one edge of the
reflection band to the center.

Figure 33: DBR Reflection Spectrum

DBR lasers can be analyzed by using the Fabry-Perot theory developed earlier. The threshold
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gain can be calculated using the same equation (55):

Gth =
1

Γ
αc (181)

=
1

Γ

(
1

2L
ln
(

1

R1R2

)
+ αs + αa

)
. (182)

Figure 34: Semiconductor Gain Spectrum for GaAs Com-
bined with the DBR Reflection Spectrum

The only difference is, R1 and R2

are now due to the DBR mirrors, but
otherwise the approach is identi-
cal to that of the Fabry-Perot cavity.
An important difference is, however,
only a very small number of longi-
tudinal modes will satisfy the round
trip phase condition due to the nar-
row reflection band. The round trip
phase must also include the reflec-
tion phase from the DBR, which is
not constant with wavelength as de-
picted in Fig 33.

For example, assuming a cavity
length of 300µm, ng = 4.5 gives a
∆λ = 0.27 nm, so only about four
or five longitudinal modes will fit
within the reflection band. To illus-
trate this, we can overlay the DBR reflection spectrum from Fig 33 with the previously calculated
gain spectrum (Fig 17). This is shown in Fig 34. We can clearly see that the reflection exists only
over a very small portion of the gain spectrum. In addition to reducing the number of longitu-
dinal modes, this has additional benefits as well. In the case of Fabry-Perot lasers, since the
mirror reflectivity is flat across all wavelengths, the the lasing modes will always be close to the
gain peak. However, small changes in current or temperature can cause the gain spectrum to
fluctuate. As a result, the number of lasing modes and their wavelengths will also fluctuate with
these changes. In the case of DBR lasers, the lasing modes will remain fixed by the DBR reflec-
tion regardless of these fluctations. The reflection spectrum of the DBR is determined only by
the grating pitch and the effective index of the waveguide. Although these parameters can also
experience some changes due to temperature or current, they are far more stable than the gain
spectrum.

Distributed Feedback (DFB) Lasers

Figure 35: Distributed Feedback (DFB) Laser Cavity

Distributed Feedback (DFB) lasers
can be considered as a specific case
of DBR lasers with the cavity length
(in Figs 29 and Fig 32) is reduced
to zero. In other words, the entire
laser cavity consists of just a grat-
ing structure. Although a zero cav-
ity length may appear to be unusual,
in terms of phase, a cavity whose
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length is zero is not really much dif-
ferent than a cavity whose phase length is a multiple of 2π. With a zero cavity length, the round
trip phase condition will be determined entirely by the reflection phase of the DBR reflectors.
From Fig 33, we can see that the reflection phase at the Bragg wavelength (850nm in this case)
is ±π/2 (either sign has the same effect on the field). After two reflections, this will become a
phase of ±π. Therefore, the round-trip phase will not be a multiple of 2π at the Bragg wave-
length. As a result, unlike the DBR laser, no lasing will be observed at the Bragg wavelength.
If we move away from the Bragg wavelength, either to longer, or shorter wavelengths, we can
find a point where the reflection phase is equal to zero. In Fig 33, these points coincide with the
reflection reaching zero. These are the resonance points of the DFB (single grating) cavity.

Figure 36: Typical lasing spectrum from a DFB laser

It may also appear odd that lasing
can occur where the reflection from
the DBR is zero. This is opposite of
the DBR lasing condition illustrated
in Fig 34. However, the reflection we
are referring to in this case is the
net reflection from the whole cav-
ity, not from one mirror alone. If we
refer to the cavity resonance con-
ditions we examined earlier (equa-
tions (??) - (??)), we noted that the
reflection from the overall system
dropped to a minimum at the res-
onance wavelengths, and to exactly
zero in the case of a symmetric cav-
ity (R1 = R2). We can consider the
DFB cavity as a symmetric system if we split the grating in half and consider the cavity as being
in the center. This is the reason why the zero reflection points from the whole grating structure
also correspond to their resonances. It is also possible to calculate the Q-factor of the cavity
and the corresponding photon lifetime, but that analysis is beyond the scope of this discussion.

Fig 36 shows the typical emission spectrum from a DFB laser. We can identify two lasing peaks
corresponding to the two zero reflection points of the grating. The distance between the two
lasing peaks is equal to the reflection bandwidth of the grating, which is typically larger than the
Fabry-Perot line spacing (equation 18). The symmetry in the emission spectrum arises from the
grating having an exactly symmetric configuration. However, in practice, the structure is never
perfectly symmetric. The shape of the gain spectrum will generally not be symmetric about the
Bragg wavelength. Additionally, the termination of the grating on one end will not be identical
to the other end. The crystal facets will also contribute to the cavity resonance, and they are
unlikely to be identical. As a result, only one emission line will be observed in practice, although
it is difficult to predict which one. This may not be acceptable in some applications that require
a very strict wavelength control, such as in spectroscopy or wavelength division multiplexed
(WDM) communication systems. Hence some modifications can be done to improve this design
and make it a truly single-frequency laser.

Quarter-Wave Shifted Distributed Feedback (QW-DFB) Lasers

This is a modified version of the standard DFB laser where a tiny cavity is introduced at the
center of the grating to create a phase shift of π

2 (quarter-wave) at the Bragg wavelength. This
is shown in Fig 37. The round-trip phase from this cavity will be π. The effect of this phase shift
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will be to exactly offset the reflection phase of π discussed in Fig 36. As a result, the resonance
moves from the two points on either side of the reflection band to the central Bragg wavelength.

Figure 37: Quarter-wave shifted DFB grating structure

Figure 38: Typical lasing spectrum from a QW-DFB laser

The typical emission spectrum from
a QW-DFB is shown in Fig 38. We
can see that the emission line has
now moved to exact center of the
reflection band, at 850 nm, making
it a truly single-frequency emission.
These lasers are ideal for applica-
tions requiring precise and narrow
emission wavelengths. They are
also known as dynamically single-
frequency lasers. This is because
any drift in the gain spectrum due to
temperature shifts will not change
the emission wavelength. The emis-
sion wavelength is determined only
by the grating period and the refrac-
tive index. Nevertheless, changes in
temperature can and do affect the
refractive index and the grating period (due to thermal expansion), but these are relatively mi-
nor effects compared to the behavior of the gain function.

Vertical Cavity Surface Emitting Laser (VCSEL)

The usual configuration of edge emitting lasers is such that all the feedback reflections occur
parallel to the substrate, making it a horizontal cavity. The vertical cavity surface emitting laser
(VCSEL) is essentially the same as the quarter-wave shifted DFB laser laying on its side. The
feedback occurs normal to the substrate instead of horizontally, and the emission is also normal
to the substrate. However, surface-emission is not the only unique characteristic in this laser
cavity. While the grating in a DFB laser is produced by etching a sinusoidal feature into the films
that make up the waveguide, in a VCSEL, the grating is produced by alternating layers of thin
films. Hence the grating in a VCSEL is produced during crystal growth rather than lithographic
patterning. This makes the VCSEL tremendously more economical and flexible comapred to
edge emitting lasers.
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Figure 39: A generic VCSEL structure on a GaAs
substrate using GaAs/AlxGa1−xAs layers and a
quarter-wave InxGa1−xAs gain layer.

A generic VCSEL structure is shown in Fig 39.
In this example, the substrate is GaAs. A num-
ber of GaAs/AlxGa1−xAs layers are grown on
the substrate to produce the grating struc-
ture similar to a DFB. The fact that all com-
positions of AlxGa1−xAs are lattice matched
to GaAs is what makes this possible. The
grating structure is interrupted near the cen-
ter of the stack with a quarter-wave thick
InxGa1−xAs layer followed by more layers of
GaAs/AlxGa1−xAs on top. The InxGa1−xAs
layer provides the quarter-wave shift to the
DFB as well as the optical gain. Since the
bandgap of InxGa1−xAs is smaller than either
GaAs or AlxGa1−xAs, most of the carriers will
accumulate in this layer. Though it is not per-
fectly lattice-matched to GaAs, it is still possi-
ble to grow this layer as long as it is relatively
thin. Furthermore, the top Bragg reflector is
generally doped p-type and the bottom stack will be doped n-type, creating a vertical PN junc-
tion. This allows the structure to behave as a double heterostructure. The separate confinement
heterostructure (SCH) is not really necessary here because the optical field in the vertical di-
rection is largely confined by the grating. The current is injected into the structure with a ring
contact at the top, and a uniform contact at the bottom. The ring contact is necessary to allow
the emission to exit the structure without being obstructed by the metal.

The peak reflection of the DBR mirrors due to the alternating layers can be shown to be

R =

∣∣∣∣tanh
[
m ln

(
n1

n2

)]∣∣∣∣ (183)

where m is the number of layer pairs, and n1 and n2 are their refractive indices. This equation is
similar to equation (179), except κL has been replaced with m

(
n1

n2

)
, which is more accurate for

gratings with high index contrasts. Typically, the cavity structure is designed with more layers
in the bottom stack than the top stack to allow most of the emission to come out of the top side.
For example, assuming 30 pairs of layers (60 layers) for the bottom stack, assuming the refractive
index of AlxGa1−xAs is 2.95 and the refractive index of GaAs is 3.45, we can calculate the reflection
to be 0.9998. With 20 layer pairs (40 layers) for the top stack, the reflection will be 0.9962. It is
necessary for these reflection values to be very high because the optical confinement factor Γv

is very small in these structures. This was defined earlier in equation (50) as the ratio between
the gain volume and the optical field volume. In this case, gain is provided only by the central
InxGa1−xAs layer (in fact, it is even smaller than the full layer thickness because quantum wells
embedded inside the quarter-wave shift layer are often used for producing the gain). As a result,
the optical field will be significantly larger than the gain volume, resulting in a very small value
for Γv . In order to keep the threshold gain reasonably low, the mirror losses, which are the
dominant component of loss in VCSELs, have to be kept small by increasing their reflectivity.
Assuming the gain region is 20 nm thick, the mirror loss becomes

αm =
1

2L
ln
(

1

R1R2

)
= 1000/cm. (184)

This gain is relatively high. Hence, alternative methods to increase the optical gain is necessary.
This is accomplished, at least partially, through the use of quantum wells (QW) as the active
region. The density of states of quantum wells is different than a bulk material, and this makes
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it possible to achieve a significantly higher gain value for the same carrier density as compared
to a heterostructure. The trade-off, however, is the small thickness of quantum wells (20 nm
in the above example). In the case of VCSELs, L will be small, leading to a high threshold gain
(1000/cm in the above example). In the case of edge-emitters, the thin quantum wells will
produce a very small cross-sectional confinement factor ΓA, also leading to a high threshold
gain. This can be offset, to some extent, by utilizing multiple quantum wells (MQW). By repeating
the quantum well structure many times, it is possible to make it appear to be thicker. This has
become the standard configuration in many diode laser structures, and is often abbreviated as
MQW lasers.

Just like with edge-emitting lasers, the generic VCSEL structure shown in Fig 39 has no trans-
verse mode confinement. As a result, it will behave like a broad-area edge-emitting laser with
numerous transverse modes. This, of course, is undesirable, so a number of techniques are
utilized to define a transverse structure in VCSELs.

Figure 40: Implant-disrupted VCSEL struc-
ture

A common technique is to use ion implantation
to create a cylindrical gain-guided structure, as
shown in Fig 40. This is similar to the edge-
emitting structure in Fig 26. A portion of the up-
per Bragg reflector is implanted with high energy
ions such that the conductivity in those areas is
lowered due to crystal disruption. This acts as a
funnel to redirect the current through the central
portions. As a result, gain will be localized to the
central portions only. Therefore, the transverse
mode will be defined entirely by the gain profile.
However, the crystal damage from ion implanta-
tion will increase the nonradiative recombination
rates in the implanted regions. This will result in
an increase in the threshold current and decrease in the overall quantum efficiency. Neverthe-
less, this is a commonly used technique that is relatively inexpensive to implement.

Figure 41: Etched-post VCSEL structure

An altertive technique is to etch a portion of
the upper Bragg reflector to define a cylindrical
waveguide, as shown in Fig 41. This overcomes
several problems in the ion implanted structures,
but still only provides a partial solution because
the cylindrical waveguide only exists in the up-
per reflector. The gain layer and the bottom
reflector are unrestricted. Therefore, there will
be diffraction losses due to the optical mode
mismatch between these regions. Additionally,
current can flow very close to the etched side
walls, producing surface recombination and leak-
age.
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Figure 42: Etched-post VCSEL structure

By far the most commonly used technique in VC-
SELs is known as oxide-aperturing. This is done by
designing one or a few layers of the upper Bragg
reflector with high aluminum content AlxGa1−xAs
layers (which will have an indirect bandgap when
x > 0.45). After etching the cylinder, the exposed
AlxGa1−xAs layers are partially oxidized in an oxy-
gen atmosphere at elevated temperatures. This
oxidation turns the AlxGa1−xAs layer into a dielec-
tric, greatly reducing its refractive index and turn-
ing it into an insulator. The timing of the oxida-
tion step is carefully controlled such that only the
outer portions of the film is oxidized. The resulting
refractive index profile allows better control of the
transverse optical mode. The oxide aperture also
keeps the current within the central region. Nev-
ertheless, the bottom Bragg reflector is largely un-
confined. Although in principle it is possible to etch through the entire structure, in practise,
etching through the active region often results in large nonradiative recombination effects.

VCSELs vs Edge-Emitting Lasers

There are many trade-offs between edge-emitting lasers and vertical cavity lasers. Some of
these are discussed below:

• Even though it is possible to make single-mode waveguides in edge-emitters, the output
beam shape will generally be elliptical. It is impossible to create a circularly symmetric
waveguide mode from a stratified thin film structure. In VCSELs, it is possible to produce
a circularly symmetric structure by patterning the planar layers from the top. However,
achieving a single waveguide mode is more difficult in VCSELs than in edge-emitters. The
etched cylinder has to be very small to become single mode. This is due to the high re-
fractive index of the materials, and also due to the high refractive index contrast between
the waveguide core (etched cylinder) and the clad (air).

• A cleaved facet is not required in VCSELs because the mirrors are entirely formed by DBR
mirrors composed of thin film stacks, whereas high quality facets are required in edge-
emitting Fabry-Perot lasers. Even in DFB and DBR lasers, some type of high-quality termi-
nation is required to allow the output beam to pass through. As a result, edge-emitters
cannot be diced (with a saw) into chips. They have to be cleaved, or otherwise separated
much more carefully. VCSELs, on the other hand, are immune from the quality of termi-
nations along the sides. This makes VCSELs a lot more manufacturable in high volumes,
significantly reducing their cost.

• Modifying the mirror reflectivities of edge-emitters requires the lasers to be separated
or cleaved first followed coating their edges. Edge-coating is a lot more difficult due to
the unique mounting and holding configurations than face-coating. VCSELs, on the other
hand, can be coated in one step at the wafer level without separating them into individual
chips.

• VCSELs can be tested for their full operation before they are diced into chips. Edge-
emitters must be separated into discrete devices before they can be evaluated. Known
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as on-wafer testing, this allows each laser to be marked and evaluated for performance
before determining which ones to dice and sort. This significantly increases the manufac-
turability of VCSELs.

• VCSELs can be fabricated in a two-dimensional array format quite easily, whereas edge
emitters are limited to a one-dimensional array only.

It may appear, therefore, that VCSELs are far superior to edge-emitting lasers. However, that
is not true. A significant weakness of VCSELs is their small cavity volume (Vp) and the gain
volume (Vγ), especially if a cylinder is etched for single-mode performance. This limits the
maximum power that can be obtained from a VCSEL. For the same power level, the photon
density and current density in a VCSEL will be far greater than in an edge-emitter. This leads to
higher internal temperatures and nonlinear optical effects. Most commercially available VCSELs
are limited to a few mW of optical output, whereas edge-emitters can easily produce several
hundred mW. Therefore, high power applications generally use edge-emitter, while VCSELs are
ideal for low-cost low-power applications.

Applications of Diode Lasers

While there are many laser systems, ranging from gas plasma lasers (HeNe, HeCd, Argon ion,
CO2, Excimer), solid state lasers (neodymium-doped yttrium aluminum garnet Nd:YAG, ruby,
titanium-doped sapphire, erbium-doped fiber lasers), diode lasers have the largest market
penetration in consumer applications. This is primarily due to their low manufacturing cost,
high gain values, miniature size and mechanical robustness. They can be manufactured using
methods similar to electronic diodes, which is a well established process. Additionally, they
are powered directly by electrical current, unlike many other lasers which have to be power by
another light source, or even by another laser. Electrical powering makes integration with elec-
tronics simpler. The high gain values means the lasing threshold can be achieved at a relatively
low injection current. As a result diode lasers can be run using a battery, making it possible to
use in portable devices. These are some of the key factors for its wide use in consumer electron-
ics. Although the output beam quality of diode lasers is generally inferior compared to other
lasers, it is adequate for a large number of consumer applications. These range from low-end
applications such as CD/DVD players, barcode readers, laser printers, laser pointers to high-end
applications such as fiber optic and free-space communication systems, laser radar and ranging
applications. Some larger lasers, such as Nd-YAG or fiber lasers use laser diodes to pump their
amplifiers to induce population inversion. These are generally referred to as ”diode-pumped”
lasers.

Coupling Laser Diodes to Optical Fibers

Earlier we examined the coupling efficiency from an LED to a multi-mode optical fiber. We can
extend those principles to laser diodes as well. The principles are essentially the same, except
for the asymmetry of the beam (especially with edge-emitting lasers). The different divergence
angles θ⊥ and θ∥ will make the integral somewhat more complicated. One way of defining the
beam divergence is to use the 1/e2 = 13.5% as the extent of the beam size. Representing the
intensity function along the ⊥ direction as cosn⊥ θ, and along the ∥ direction as cosn∥ θ, we can
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write

0.135 = cosn⊥ θ⊥ (185)
0.135 = cosn∥ θ∥. (186)

This results in

n⊥ =
ln (0.135)

ln (cos θ⊥)
=

−2

ln (cos θ⊥)
(187)

n∥ =
ln (0.135)

ln
(
cos θ∥

) =
−2

ln
(
cos θ∥

) . (188)

Then we can empirically represent the intensity function as

I (θ, ϕ) = Io cosm θ, (189)

where
m =

(
n∥ − n⊥

)
sin2

ϕ+ n⊥. (190)

We can verify that m = n⊥ when the azimuthal angle ϕ = 0, and m = n∥ when ϕ = π/2. Coupling
efficiency, therefore, can be calculated by performing the integration:

ηc =

∫ θa
0

∫ π/2

0
(r sin θdϕ) (rdθ) (Io cosm θ)∫ π/2

0

∫ π/2

0
(r sin θdϕ) (rdθ) (Io cosm θ)

(191)

=

∫ θa
0

∫ π/2

0
cosm θ sin θ dϕ dθ∫ π/2

0

∫ π/2

0
cosm θ sin θdϕdθ

. (192)

Unfortunately, this cannot be evaluated analytically, but numerical integration is relatively
straight forward.

Example

Given an edge emitting laser with θ⊥ = 28◦ and θ∥ = 8◦, we can get

n⊥ =
ln (0.135)

ln (cos 28◦) = 16 (193)

n∥ =
ln (0.135)

ln (cos 8◦) = 204. (194)

Comparing this with LEDs, we can see that the beam is significantly narrower. The values of n
for LEDs were in the range of 1-5, whereas for lasers it is in the range of 100. For the above
example we can get:

m = 188 sin2
ϕ+ 16. (195)

By numerically integrating the equation (192), we can calculate the coupling coefficient of 55%.
Therefore, even without any optics, the coupling efficiency from a laser diode to a fiber can
be significantly higher than from an LED. Unlike an LED, there is more latitude to use a lens to
increase coupling, even when the laser diode emission diameter is larger than the fiber core
diameter. Due to the very small divergence angle of the leaser beam, we can afford to de-
magnify it despite the resulting enlargement in divergence angles. However, some aspects of
this are complicated by the fact that the beam is asymmetric. This generally requires the use
of multiple cylindrical lenses.
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Back Facet Power Monitoring

So far we have implicitly assumed that the optical output emerges from mirror #1 (front mirror)
and the mirror #2 (back mirror) to be highly reflective. In edge-emitting lasers, it is possible
to use the power that comes out of the backside mirror to assess the power out of the front
side mirror. Because the reflectivity of both mirrors are controlled and precisely known, we can
derive a relationship between the two output powers. Referring back to equation (108), we can
write the following:

Po1 = hν
ϕVp

τpm1
(196)

Po2 = hν
ϕVp

τpm2
. (197)

Therefore,
Po1

Po2
=

τpm2

τpm1
=

lnR2

lnR1
(198)

This relationship allows us to determine the output power by measuring the backside power. A
photodetector can be attached to backside facet, known as the back facet monitor, to measure
the power output from the laser in real time without interrupting the output beam. This is very
convenient because all other methods of measurement requires splitting the output beam and
redirecting one portion to a detector.

Biasing and Modulating Laser Diodes

Laser diodes can be driven just like LEDs or any other diodes, with a limiting resistor and a
voltage source, or a constant-current source. However, due to the large responsivity of the
laser diode above threshold compared to LEDs, laser diodes require a very stable power supply.
Voltage fluctuations can lead to very large fluctuations in photon density, and if the photon
density increases too much, even momentarily, it can lead to catastrophic damage to the laser
facets. As a result, highly stable power supplies are necessary, especially with laser diodes that
have high responsivity values. In many cases, laser diode drivers also have integrated power
monitoring capability (from the backside facet) and temperature controllers.

Figure 43: A laser diode biasing
circuit with a current-limiting re-
sistor

A typical circuit for biasing a laser diode is shown in Fig 43.
For example, if the laser diode has a forward voltage of Vf =
1.6V and the desired operating current is I = 100mA, and
the supply voltage source is V 1 = 5V, the required series
resistance can be calculated as

R1 =
V 1− V f

I
= 34Ω. (199)

V 2 is the small signal modulation voltage that is superim-
posed on the DC bias. As with LEDs, to reduce nonlinear-
ity, the amplitude of the modulation voltage has to be kept
fairly small.
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Homework 6
1. Consider an In0.53Ga0.47As/InP Fabry-Perot laser diode with a cavity length of L = 250µm.

The active region (In0.53Ga0.47As) has a bandgap Eg = 0.76eV, an effective refractive index
of 3.5 and a group refractive index of 4.0. The optical confinement factor of the waveguide
is 10%.

• The laser facets are coated such that R1 = 0.4 and R2 = 0.95. Assuming the internal
loss, αa + αs, is 10/cm, calculate the threshold gain value.
Run this code
import k o t l i n . math .*
//Andrew Sarangan

fun main ( ) {
va l L = 250.0
val R1 = 0 .4
val R2 = 0.95
val alpha = 10 .0
val Gamma = 0 . 1
val Gth = ( 1 . 0 / ( 2 . 0 * L ) * ln ( 1 . 0 / ( R1*R2 ) ) *1 .0 E4 + alpha ) /Gamma
p r i n t l n ( ” Gth = $ {”%.2 f ” . format ( Gth ) }/cm” )

}

>>Gth = 293 .52/cm

• Calculate the total photon lifetime in the cavity.
Run this code
import k o t l i n . math .*
//Andrew Sarangan

fun main ( ) {
va l L = 250.0
val R1 = 0 .4
val R2 = 0.95
val alpha = 10 .0
val nef f = 3 . 5
val c = 3 .0 e10
val alphaC = 1 . 0 / ( 2 . 0 * L ) * ln ( 1 . 0 / ( R1*R2 ) ) *1 .0 E4 + alpha
val tauP = 1 .0/ alphaC* nef f /c
p r i n t l n ( ” Photon L i fet ime = $ {”%.2 f ” . format ( tauP *1 .0 e12 ) } ps ” )

}

>>Photon L i fet ime = 3 . 9 7 ps

• Calculate the extraction efficiency from this laser cavity (above threshold).
Run this code
import k o t l i n . math .*
//Andrew Sarangan

fun main ( ) {
va l L = 250.0
val R1 = 0 .4
val R2 = 0.95
val alpha = 10 .0
val alphaM1 = 1 . 0 / ( 2 . 0 * L ) * ln ( 1 . 0 / R1 ) *1 .0 E4
val alphaC = 1 . 0 / ( 2 . 0 * L ) * ln ( 1 . 0 / ( R1*R2 ) ) *1 .0 E4 + alpha
val etaExt = alphaM1/alphaC
p r i n t l n ( ” Ex t rac t ion E f f = $ {”%.2 f ” . format ( etaExt ) } ” )
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}

>> Ext rac t ion E f f = 0 .62

• This diode laser has a back facet power monitor. If the power measured on the back
facet power monitor is 500µW, what would the output power through the front facet
be?
Run this code
import k o t l i n . math .*
//Andrew Sarangan

fun main ( ) {
va l R1 = 0 .4
val R2 = 0.95
val backfacetP = 0 .5
val PowerRatio = ln ( R1 ) / ln ( R2 )
p r i n t l n ( ” Output Power = $ {”%.2 f ” . format ( backfacetP*PowerRatio ) } mW” )

}

>>Output Power = 8 .93 mW

• Current is injected into this diode such that the difference between the quasi-Fermi
levels is Efc − Efv = 0.80eV. Ignoring all internal losses, determine the maximum
number of longitudinal modes that will experience positive gain.
Run this code
import k o t l i n . math .*
//Andrew Sarangan

fun main ( ) {
va l Eg = 0 . 76
val E fc_Efv = 0.8
val lambdaG = 1 . 24/ Eg
val ng = 4 .0
val L = 250.0
val DeltaLambda = lambdaG . pow ( 2 ) / ( 2 . 0* ng*L )
val modes = ( ( 1 . 2 4 / Eg−1.24/ Efc_Efv ) /DeltaLambda ) . t o I n t ( )
p r i n t l n ( ” DeltaLambda = $ {”%.2 f ” . format ( DeltaLambda *1000.0) } nm” )
p r i n t l n ( ” Number of modes = $modes ” )

}

>>DeltaLambda = 1 . 3 3 nm
>>Number of modes = 61

2. The above In0.53Ga0.47As/InP structure is being used as semiconductor optical amplifier.
The minimum desired single-pass amplification is 100. Assuming both facets have equal
reflectivity, with αa + αs = 10/cm, calculate the maximum permissible facet reflection to
prevent oscillations (assuming both facets to be identical).

If A is the amplification,
A = eΓGL → ΓG = ln(A)

L
.

To prevent oscillations, we need
ΓG < αm + αa + αs

αm > ΓG− (αa + αs)
1
2L

ln
(

1
R2

)
> ΓG− (αa + αs) =

ln(A)
L

− (αa + αs)
ln

(
1
R

)
> ln (A)− (αa + αs)L

R < e− ln(A)+(αa+αs)L

Run this code
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import k o t l i n . math .*
//Andrew Sarangan

fun main ( ) {
va l L = 250.0
val alpha = 10 .0
val A = 100.0
val R = exp(− ln ( A ) +alpha*L *1 .0 e−4)
p r i n t l n ( ” R = $ {”%.2 e ” . format ( R ) } ” )

}

>>R = 1 . 2 8 e−02

3. • The extraction efficiency and responsivity of a laser diode is much larger than that of
LEDs. Explain the main reasons for this.

Laser resonance takes place between the mirror facets. Hence the beam is parallel to
the mirrors. As a result, more of the photons fall within the escape cone in a laser. LED
has a broad angular spread (Lambertian), and a large fraction of photons fall outside the
escape cone.

• The modulation response of a laser diode is typically much greater than LEDs. Explain
the main reasons for this.

The coupling between photons and carriers make the response time in lasers related to
the photon lifetime. This value is typically in picoseconds. In LEDs (or any diodes), the re-
sponse time is related to the carrier recombination life time, which is in the nanoseconds
to microseconds range.

• Explain the differences between homostructures, single heterostructures, double het-
erostructures, and separate confinement heterostructures in the context of semicon-
ductor diode lasers.

4. Consider a GaAs/AlxGa1−xAs VCSEL with a In0.1Ga0.9As active layer. The top and bottom
reflectors have a reflection coefficient of 0.990 and 0.999, respectively. The thickness of
the gain region is 25nm, and the confinement factor can be assumed to be 1.0 within the
active layer.

• Ignoring other material losses, calculate the threshold gain.
Run this code
import k o t l i n . math .*
//Andrew Sarangan

fun main ( ) {
va l R1 = 0.99
val R2 = 0.999
val L = 25 .0 //nm
val alphaC = 1 . 0 / ( 2 . 0 * L ) * ln ( 1 . 0 / ( R1*R2 ) ) *1 .0 E7
val Gth = alphaC // since confinement = 1
p r i n t l n ( ” Gth = $ {”%.2 f ” . format ( Gth ) } /cm” )

}

>>Gth = 2 2 1 0 . 1 7 /cm

• Qualitatively explain the reason why VCSELs have a much narrower emission spec-
trum than Fabry-Perot lasers.
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The emission wavelength in VCSELs is controlled by the grating mirror consisting of multi-
ple layer of thin films. With a quarter-wave shifted grating, it is possible to create a single
resonance wavelength. In a Fabry-Perot laser, the mirrors reflect a very broad range of
wavelengths. Hence the emission spectrum is controlled primarily by the gain spectrum
(which is relatively broad).

5. A diode laser has a beam divergence of θ∥ = 10◦ and θ⊥ = 20◦. Assuming a fiber with a
numerical aperture of 0.15, and the near-field beam of the laser is an ellipse 10µm x 2µm,
and that the fiber core has a diameter of 25µm, estimate the coupling efficiency (without
a lens). Discuss how this coupling can be improved by using lenses.
Run this code
import k o t l i n . math .*
//Andrew Sarangan

fun Double . toRad ( ) = t h i s *PI /180.0

fun main ( ) {
fun fn ( theta : Double , phi : Double , m: Double ) = cos ( theta ) . pow(m) * s in ( theta )
val nperp = ln ( 1 . 0 / exp ( 2 . 0 ) ) / ln ( cos ( 2 0 . 0 . toRad ( ) ) )
va l nparl = ln ( 1 . 0 / exp ( 2 . 0 ) ) / ln ( cos ( 1 0 . 0 . toRad ( ) ) )
va l dTheta = 1 . 0 e−3
val dPhi = 1 . 0 e−3
val theta = DoubleArray ( ( PI /2 .0/ dTheta ) . t o I n t ( ) ) { i t *dTheta }
val phi = DoubleArray ( ( PI /2 .0/ dPhi ) . t o I n t ( ) ) { i t *dPhi }
va l NA = 0 . 1 5
val thetaA = asin (NA)

var t o t a l = 0.0
var coupled = 0.0
phi . forEach { phi −>

val m = ( nparl−nperp ) * s in ( phi ) . pow ( 2 ) + nperp
theta . forEach { theta −>

t o t a l += fn ( theta , phi ,m) *dTheta*dPhi
i f ( theta < thetaA ) {

coupled += fn ( theta , phi ,m) *dTheta*dPhi
}

}
}
p r i n t l n ( ” $ {”%.2 f ” . format ( coupled/ t o t a l ) } ” )

}

> >0.50

117

https://pl.kotl.in/grwOEO95W


Andrew Sarangan

Photodetectors
Photodetectors can be categorized into photon detectors and thermal detectors. Photon de-
tectors rely on the creation of an electron-hole pair due to an absorbed photon. Hence, these
devices require a semiconductor with an appropriate bandgap. However, unlike emitters like
LEDs and laser diodes, the bandgap does not have to be direct. Photon absorption can take
place even in indirect bandgap semiconductors, such as silicon and germanium.

There are two broad categories within photon detectors - photoconductors and photodiodes.
The ones that produce a change in conductance (or resistance) due to an incident light are
known as photoconductors (or as photocells, or photoresistors). Strictly speaking, these are
variable resistors whose resistance is a function of incident radiation. As resistors, they convert
electrical energy into heat. They do not produce electrical energy from electromagnetic energy.
Photodiodes, on the other hand, can convert electromagnetic energy into electrical energy. But
that is a feature, not a requirement. The majority of photodiodes are used simply as a sensor,
not as an energy harvester. Photovoltaic devices (solar cells) are another class of photodiodes
designed for the explicit purpose of converting light energy into electrical energy.

Thermal detectors are based on the heating effect due to light absorption. Bolometers oper-
ate by absorbing an incident radiation and converting it to heat, and then measuring the rise in
temperature by using a temperature-sensitive resistor. A large temperature coefficient of resis-
tance (TCR) is desired for this application. The rise in temperature can also be measured using
crystals that have a pyroelectric effect, which produce a voltage difference due to a temperature
difference.

The table below lists the common semiconductors used in photodetectors, their bandgaps and
the corresponding cutoff wavelengths at room temperature (300K). Bandgaps generally de-
crease with increasing temperature, so those materials that are used at cryogenic temperatures
(such as InSb and InAs) will exhibit larger bandgaps than listed here.

Material Bandgap
(eV)

Wavelength
(um) Type Application

CdS 2.42 0.51 Direct Photocells
CdSe 1.74 0.71 Direct Photocells
CdTe 1.5 0.83 Direct Solar cells
GaAs 1.42 0.87 Direct
InP 1.27 0.97 Direct
Si 1.1 1.12 Indirect Visible and NIR detectors and cameras
In0.53Ga0.47As 0.74 1.67 Direct SWIR detectors and cameras
Ge 0.66 1.87 Indirect
PbS 0.37 3.35 Direct MWIR detectors
InAs 0.36 3.44 Direct MWIR detectors
PbSe 0.27 4.6 Direct MWIR detectors
InSb 0.23 (at 77K) 5.4 Direct MWIR detectors and cameras
Hg1−xCdxTe -0.3 to 1.6 (at 77K) Direct MWIR & LWIR detectors and cameras
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Photodiodes

PN junction diodes can operate as photon detectors. In fact this is the most widely used type
of photodetector. When illuminated to light, the electron-hole pairs generated by the photons
can significantly modify the I-V characteristics of the diode. The number of incident photons
can then be determined by measuring the change in voltage (at a fixed current), or a change in
current (at a fixed voltage).

Figure 1: Potential band diagram of a PN junc-
tion under zero bias.

Consider, for example, the potential band di-
agram of a PN junction under zero bias as
shown in Fig 1. An incident photon will cre-
ate an electron-hole pair by elevating an elec-
tron from the valence band to the conduc-
tion band. The electron and hole will exist
in the same space as a single neutral parti-
cle known as an exciton. Excitons are loosely
bound electron-hole pairs, and are easily ion-
ized by even a small electric field. When an
exciton is exposed to an electric field, it will
get ionized and become separated into a free
electron and a free hole. The electron and
hole will move in opposite directions, but it will constitute a single current flowing from the
N-side to the P-side. This is in the same direction as the reverse bias current, and will present
itself as an offset current to the normal bias current. Therefore, the I-V relationship becomes:

I = Is

(
eVa/Vt − 1

)
− Iph, (1)

where Iph is the photocurrent. Iph constitutes only those excitons that are intercepted by the
space charge region. All the other excitons that never intercept the space charge region will
eventually recombine and disappear.

Figure 2: Terminal characteristics of a photodiode plotted as I-V (left) and as log(|I|)-V (right).

The I-V curves of a photodiode with and without illumination are shown in Fig 2. With illumi-
nation, the current will experience an offset that is equal to the photocurrent. Due to the large
difference in magnitudes, especially in the reverse direction, this is best plotted on a log scale
after taking the magnitude of the current. Given the small values of the reverse saturation cur-
rent, the photocurrent offset produces the largest change in the reverse bias region. Therefore,
photodetectors are typically operated in the reverse base region.
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As stated before, excitons have to be exposed to an electric field in order to be separated into
free carriers. We also know that nearly all of the electric field is contained in the space charge
region. Therefore it may appear that only a small fraction of excitons that are generated inside
the space charge region will become electrons and hole. But this is not actually the case. In
practice, nearly all excitons will be ionized. This is due to the non-zero electric field that ex-
ists outside the space charge region. But only some of them will survive long enough to cross
the space charge region and become majority carriers. To understand this, we have to revisit
the description of current flow in diodes. We saw that minority carriers carry the current only
to within a few diffusion lengths outside the space charge region. The current through the re-
mainder of the structure is carried by drift current of the majority carrier. This requires a small
electric field, and a small potential drop. This field is sufficient to ionize the excitons and create
free electrons and holes. However, whether or not those minority carriers will reach the space
charge layer (from which they will emerge as majority carriers) will depend on their carrier life-
time and the transit time.

Figure 3: Transit time model of a photodiode

Referring to the illustration in Fig 3, an exciton generated in the p-side will produce a minority
carrier electron and a majority carrier hole. The minority electron needs to survive the trip to
the space charge layer. The transit time will be

tr,n =
Zp

vn
(2)

where Zp is the distance (on the p-side) from that exciton to the space charge layer, and vn is
the drift velocity of the electron on the p-side. Since the field is very small, the drift velocity
will be in the linear regime, allowing it to be written as

vn = µnEp (3)

where Ep is the field on the p-side. This electric field can be deduced from the current flowing
through the diode as

I = qAµppEp = qAµpNAEp (4)

where A is the cross-sectional area of the diode, and NA is the acceptor doping. Therefore,

Ep =
I

qAµpNA
(5)
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from which we can get

tr,n =
Zp

vn
(6)

=
Zp

µnEp
(7)

=
Zp

µn

qAµpNA

I
. (8)

In these expressions, we are making the assumption that the drift current is uniform across
the entire diode. Clearly, this is not exactly the case. Referring to the chapter on diodes, we
can surmise that the drift current will grow as one moves away from the space charge region.
This means that the field will be higher near the space charge layer. However, as a first order
approximation, this is a reasonable assumption to make.

Similarly, for the excitons created on the n-side, we can get

tr,p =
Zn

µp

qAµnND

I
. (9)

In this model we have ignored the transit time through the space charge layer. This is a reason-
able assumption because its value typically very small. Because of the high field in this region,
the carriers will travel at high velocities. At even higher fields, they can reach velocity satura-
tion. In silicon, this saturation velocity is on order of 107cm/s. Since space charge layer widths
are usually on the order of 1− 5µm, the transit time through the space charge layer works out
to be on the order of 10ps.

If the total transit time is longer than τ , then those carriers will recombine and disappear before
reaching the space charge layer. Therefore, the maximum distance an exciton can travel on the
p- and n-side can be written as

Zp,max =
Iτn

qANA

µn

µp
, (10)

Zn,max =
Iτp

qAND

µp

µn
. (11)

Figure 4: Attenuation of optical intensity and
the collection volume.

Any excitons created outside of these bound-
aries will not contribute to any photocurrent.
Exctions that are too close to the incident sur-
face, or too far into the substrate will be lost
before they can reach the space charge layer.
Zn,max+xn+xp+Zp,max is known as the collec-
tion width of the photodiode, where xn and
xp are the space charge widths on the n and
p-sides, respectively.

It is worth pointing out that the drift fields Ep

and En, depend on the photocurrent I . Since
that is the quantity we are trying to calculate,
this requires an iterative solution. We have to
make an estimate of the photocurrent to get
Ep and En, from which can calculate the responsivity and the photocurrent.
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The incident light will be absorbed as it enters the semiconductor, and the intensity will decay
as a function depth

I = Iie
−αz (12)

where α is the attenuation coefficient. The attenuation can also be expressed in terms of the
imaginary part of the refractive index

α = 2k0κ (13)

where the refractive index is n− jκ. The intensity that is lost due to absorption can be written
as a differential quantity dI . The collection efficiency is, therefore,

ηc =

∫ d+Z

d
dI
dzdz∫∞

0
dI
dzdz

(14)

where d is the distance below the incident surface where the collection region begins, and

Z = Zn,max + Zp,max + xn + xp (15)

where xn + xp is the space charge width. From this, we can get

ηc = e−αd
(
1− e−αZ

)
. (16)

Quantum Efficiency of Photodiodes

The internal quantum efficiency (IQE), ηi is the number of electron-hole pairs produced per
incident photon. With proper anti-reflection coating, it is possible to achieve a very high internal
quantum efficiency in most semiconductor materials.

The fraction of excitons that fall between the bounds of Zn and Zp is the collection efficiency
ηc. This was derived in equation (16). The external quantum efficiency (EQE) is, therefore

ηe = ηiηc. (17)

While the value for IQE can be very high, the collection efficiency varies greatly with geometry
and applied bias. We can see from equations (10) and (11) that bias current (and hence bias
voltage) has a linear effect on the collection width.

The responsivity can be expressed in terms of the external quantum efficiency as

q
Pi

hν
ηe = Iph (18)

R = ηe
q

hν
. (19)

Dark Current

The dark current of a photodiode is the current that would flow with no illumination. Earlier,
we had the photodiode I-V characteristic as:

I = Is

(
eVa/Vt − 1

)
− Iph. (20)
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Under reverse bias with a sufficiently large and negative Va, and under dark conditions (zero
Iph), the diode current would become

I ≈ −Is. (21)

The value of Is (reverse saturation current) depends on semiconductor parameters such as in-
trinsic concentration, doping concentrations, diffusion coefficients and diffusion lengths, which
we examined in an earlier chapter on basic diode properties. Using this model, typical values
for a 1 cm x 1 cm diode will be smaller than a pico amp. But in practice, the measured saturation
currents are significant higher, on the order of nano amps. This arises due to additional current
components not accounted for in the expression for Is, some of which include the following:

• In deriving the diode I-V characteristics, we had assumed that the recombination lifetime
was a constant value τ . In reality, this lifetime will be a function of carrier concentration,
leading to a nonlinear recombination rate with carrier density. Different mechanisms con-
tribute to these recombination events. The three dominant mechanisms are (1) radiative
(band-to-band) recombinations, (2) trap-assisted recombinations (also known as Shockly-
Read-Hall recombinations) and (3) Auger recombinations (which dominates at high carrier
densities). Under steady-state, the generation rate will be equal to the recombination
rate. Under forward bias, the recombination rate will exceed the generation rate. Under
reverse bias, generation rate exceeds recombination rate. In the I-V diode equation (20),
the lifetime is contained in the saturation current Is. The nonlinear nature of the lifetime
will become most apparent in the reverse bias region, resulting in an increase in current
with bias voltage.

• Defects in the semiconductor crystal will lead to an additional current component that
leaks through the PN junction. Some of this could also arise due to non-uniform doping
density, especially in thermally diffused doping profiles. In such structures, doping levels
will be high near the surface, resulting in very narrow space charge widths. This can lead
to a tunneling current through the PN junction.

• Even though the surface area A of the photodiode is typically taken as the top surface
area, in practice, the junction is a three-dimensional structure. It will contain sidewall
areas in addition the horizontal area. This will lead a larger effective surface area, which
will produce a higher Is than calculated.

Due to these effects, the total dark current can be significantly larger than what we calculated
assuming a constant value for τ . A simple model to account for this is by modifying the diode
equation (1) with a parallel current path for Is, using an equivalent shunt resistor:

I =

(
Is +

|Va|
Rshunt

)(
eVa/Vt − 1

)
− Iph. (22)

This is a highly simplified model, but it does provide a means to account for the excess currents
without complicated equations. Additionally, Rshunt should not be taken as a constant, because
it will be bias-dependent. Typical values for Rshunt will be on the order of 100 MΩ. At 5V reverse
bias, this will lead to a current of about 50 nano amps instead of pico amps.

Example

Consider a silicon PN junction photodiode with an internal quantum efficiency of 0.9, and with
a surface area of 100µm x 100µm. It is irradiated with an incident intensity of 10mW/cm2 at a
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wavelength of 600nm. We will assume that the surface is AR coated such that all of the light
enters the semiconductor. Furthermore, assume that the junction is at a depth of 2µm below
the surface. The top side is doped p-type with NA = 1017/cm3. The substrate is doped n-type
with ND = 1015/cm3. The diode is reverse biased, with a dark current of 10nA at a bias voltage
of −5V.

The lifetimes of the minority carriers are a strong function of doping density. These values can
be looked up from repositories. We can get the following lifetime values for NA = 1017/cm3

and ND = 1015/cm3:

τn = 20 µs (23)
τp = 200 µs. (24)

Additional values can be looked up as well: µn = 1450cm2/V.s and µp = 200cm2/V.s, Dn = 37
cm2/s and Dp = 5 cm2/s. Assuming a long diode approximation for the n-side and a short-diode
approximation for the p-side, we can calculate the value for Is,

Is = qA

(
Dn

Wn

n2
i

NA
+

Dp

Lp

n2
i

ND

)
︸ ︷︷ ︸

6.78 fA

+
|Va|
Rshunt

= 10 nA, (25)

where we have used Wn as the junction depth on the p-side. Obviously the linear saturation
current is much smaller than the actual dark current, so we can ignore it and can get the shunt
resistance of the diode as

Rshunt =
5

10× 10−9
= 500 MΩ. (26)

The built-in voltage for this diode can be calculated as:

Vbi = Vt ln
(
NDNA

n2
i

)
= 0.026 ln

(
1015 × 1017

(1.5× 1010)
2

)
= 0.697 V. (27)

Next, we can calculate the total space charge width at the given bias voltage of −5V. Silicon has
a dielectric constant value of 11.68ϵo. Therefore,

xp =

√
2ϵs
q

ND

NA

1

NA +ND
(Vbi − Va) = 27 nm (28)

xn =

√
2ϵs
q

NA

ND

1

NA +ND
(Vbi − Va) = 2.7 µm. (29)

As a result, the total space charge width is 2.73µm, extending primarily into the substrate.

In order to proceed further, we need to assume a diode current (sum of dark current and pho-
tocurrent). Since that is the end-result we are trying to calculate, this has to be done recursively.
We will start by assuming I = 200nA. Using this, we can get the collection widths on either side
of the junction:

Zp,max =
Iτn

qANA

µn

µp
= 90 nm (30)

Zn,max =
Iτp

qAND

µp

µn
= 6.9 µm. (31)

The total collection width becomes:

Z = Zn,max + Zp,max + xn + xp = 9.7 µm. (32)
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We can note that the collection width is significantly larger than the space charge width. This
is a typical with most photodiodes. One way to increase the collection width in photodiodes is
by using a substrate with a longer recombination lifetime τn or τp (which is typically done by
selecting a high-quality low-defect substrate with low doping values, or ideally undoped).

We can also calculate the electric fields in the collection regions:

Ep =
I

qAµpNA
= 3.1× 10−4 V/cm (33)

En =
I

qAµnND
= 8.6× 10−3 V/cm. (34)

The value of the electric field inside the space charge region is much greater. Although this field
is not constant, the average field can be estimated to be

Ēsc =
Vbi − Va

xn + xp
= 2.1× 104 V/cm, (35)

which validates are earlier assumption that the field outside the space charge region is much
smaller.

Next, we have to look up the refractive index of silicon at λ = 600nm. This value is n − jκ =
3.93− j0.018521. Therefore, the attenuation coefficient works out to α = 3879/cm.

Finally, the collection efficiency can be calculated:

ηc = e−αd
(
1− e−αZ

)
= 0.45, (36)

from which we can get the external quantum efficiency (EQE) of

ηe = ηiηc = 0.40. (37)

Finally, the responsivity becomes

R = ηe
q

hν
= 0.40

0.6

1.24
= 0.195 A/W. (38)

Since the incident intensity is 10mW/cm2, the incident power becomes

Pi = IiA = 10×
(
100× 10−4

)2
= 1µW. (39)

Therefore, the detected photocurrent will be

I = RPi = 195 nA, (40)

which is very close to the 200nA we had assumed at the start of this calculation. Therefore, it is
not necessary to iterate the calculation.

Spectral Response of Photodiodes

Using the model developed in the previous section, we can predict the spectral behavior of
photodiodes. This is going to be primarily dictated by the dispersion characteristics of the
semiconductor material. In most semiconductors, α becomes smaller as the wavelength ap-
proaches the band gap wavelength, and falls to zero for wavelengths longer than the bandgap
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wavelength. Therefore, the collection efficiency (equation (16)) will decline as one approaches
the band gap wavelength from shorter wavelengths. At the other end of the spectrum, at very
short wavelengths, α will be extremely large. This also results in a reduced collection efficiency.
This arises because most of the absorption will now take place in the region above the collection
region.

The shape of the spectral response will be largely dictated by two factors. Most of the short-
wavelength photons are absorbed close to the incident surface, and most of the longer-wavelength
photons are absorbed deeper within the semiconductors. Therefore, the short-wavelength re-
sponse will be a strong function of the depth of the junction below the surface (d in Fig 4).
Long-wavelength response will be a strong function of the depth of the collection region. Sil-
icon photodiodes optimized for blue wavelengths are fabricated with extremely shallow junc-
tions (on the order of a few hundred nanometers), and those optimized for infrared are designed
with a very thick collection region (such as PIN diodes, discussed a littler later in this section).

Example (Cont’d)

Figure 5: Plot of attenuation coefficient α vs wavelength and
the corresponding value of collection efficiencies for junction
depths of 0.25µm, 2µm and 10µm.

Continuing the example of the
silicon photodiode from be-
fore, we can look up the dis-
persion characteristics of sili-
con, from which we can plot the
behavior of α vs wavelength.
This is shown on the right hand
axis of Fig 5. Then, we can cal-
culate the collection efficiency
using equation (16), which is
shown on the left hand axis
Fig 5. Three different junc-
tion depths are used: 0.25µm,
2µm and 10µm. We can see
that α is very large at wave-
lengths below 400nm, which
leads to a nearly zero col-
lection efficiency in all cases.
As α declines with increas-
ing wavelength, collection effi-
ciency goes up, reaching a peak
value, and then declines. This peak occurs at different wavelengths depending on the junction
depth. For the shallow 0.25µm junction, the peak is 0.8 at a wavelength of 550nm. For the junc-
tion at 2µm below the surface, the peak value is 0.38 at a wavelength of 680nm, and for 10µm
deep junction, the peak value is 0.12 at a wavelength of 800nm. Beyond 1µm, the value of α is
very small, and the collection efficiency declines to extremely small values in all three cases.
We can also notice that except for the shift towards longer wavelengths, the peak values of the
deeper junctions are no higher than that of the shallow junction. This is because the top layer
is simply acts like a long-pass cut-off filter. A thinner top layer allows more of the shorter wave-
lengths to pass through, but it does not necessarily improve the collection of long-wavelength
photons. To improve the collection of long wavelength photons, the maximum depth of the col-
lection area has to be increased. To illustrate this effect, Fig 5 also shows the case for a device
with the junction 10µm below the surface, but extending deeper, with Z = 100µm. We can see
the peak value for this case is significantly higher in the infrared, reaching a maximum of 0.71
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at a wavelength of 930nm.

Figure 6: Plot of responsivity vs wavelength.

Fig 6 shows the responsivity plots for the
same scenarios shown in Fig 5. All of the
curves exhibit essentially the same spectral
shape as the collection efficiency, except for
a small shift due to the photon energy hν in
equation (19). The responsivity is nearly zero
below 400nm for all cases. The peak respon-
sivity values are progressively at longer wave-
lengths as the junction is placed deeper be-
low the substrate surface. For the case with
Z = 100µm, the peak responsivity occurs at
930nm.

Silicon PN Photodiode Structures

Figure 7: Generic silicon photodiode structure

The generic structure of a silicon photodi-
ode is shown in Fig 7. In this configuration,
the device is constructed on an n-type sub-
strate by selectively doping an area p-type.
This is known as compensation doping, where
the opposite dopant type is used to com-
pensate and reverse the polarity of the sub-
strate. Obviously, this will require the p-type
concentration to be larger than the n-type.
Then electrical contacts are placed on the p-
side. Since the metal contacts should allow
the light to enter the semiconductor, the con-
tact it has to be designed in a ring configura-
tion. Anti-reflection coatings are also applied
to the top surface of the device. The n-type
contacts are made on the back side of the substrate. Since light is not entering from this side,
it can be a uniform metal film. However, a metal on a lightly doped semiconductor often cre-
ates what is known as a Schottky barrier. This will distort the I-V characteristics of the PN
junction diode. Therefore, a thin highly-doped n-type layer is created first, followed by the
metal film. This allows the semiconductor/metal interface to behave as an ohmic contact. This
type of geometry, where the light is incident from the junction-side of the device is known as
front-side-illuminated photodiodes. In general, a lightly-doped substrate is will improve the
collection efficiency because the minority carrier lifetime will then be longer on the substrate
side. A shorter carrier lifetime on the front side is inevitable because it will usually be doped
higher than the substrate.
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PIN Photodiodes

Figure 8: Optical absorption and collection in a
P-I-N photodiode.

P-I-N photodiodes consist of an extra intrin-
sic layer (hence the ”I”) sandwiched between
the p-side and the n-side of the diode. This
effectively creates a double junction: one at
the P-I interface and another at the I-N inter-
face. In practice, the I-layer will never be in-
trinsic, but it will be lightly-doped either p-
type or n-type.

In the previous example we saw that the
space charge layer primarily exists in the low-
doped side of the junction. The lower the
doping, the larger the space charge width. In
the case of P-I interface, the space charge
layer will be large and all of it will exist in the
I-layer. Similarly, all of the space charge of
the I-N junction will also exist in the I-layer.
In fact, the extent of the space charge layer in
the I-layer will be several hundred microns.
When the calculated space charge width exceeds the I-layer thickness, the entire I-layer will be
depleted (it will not spill into the adjacent doped layers), merging both the P-I and I-N junctions
together into a single junction.

There are several advantages to the PIN photodiode compared to a PN photodiode. The space
charge width will be much larger than in a regular PN photodiode (tens of microns instead of
a few microns). This will increase the collection efficiency of the photodiode. Additionally,
the large space charge width also reduces the breakdown voltage of the diode under reverse
bias. This enables us to bias the photodiode at a high reverse bias, which can produce greater
linearity.

Example (Cont’d)

Consider a similar example as before, but with a silicon PIN photodiode configuration with a
I-region thickness of 300µm. The start of the I-region is at 0.25µm distance from the surface of
the semiconductor.

Zn,max and Zp,max will remain the same because the p and n-type doping concentrations are
the same as before, at 90nm, and 6.9µm, respectively. The built-in voltage Vbi will also remain
unchanged at 0.697V. At a reverse bias voltage of 5V, we can get the space charge widths for the
P-I junction as:

xp =

√
2ϵs
q

ni

NA

1

NA + ni
(Vbi − Va) = 0.1 nm (41)

xi =

√
2ϵs
q

NA

ni

1

NA + ni
(Vbi − Va) = 700 µm. (42)

where we have used an intrinsic carrier density of ni = 1.5 × 1010cm−3. At the I-N junction, we
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can get

xi =

√
2ϵs
q

ND

ni

1

ni +ND
(Vbi − Va) = 700 µm (43)

xn =

√
2ϵs
q

ni

ND

1

ni +ND
(Vbi − Va) = 10 nm. (44)

From this, we can see that the sum of the calculated space charge widths in the I-layer is sig-
nificantly larger than the I-layer thickness. As a result, the entire I-layer will be depleted. The
space charge width on the p-side and n-sides are negligibly small.

Next, we can calculate the total collection width:

Z = Zn,max + Zp,max + xn + xp = 307 µm. (45)

Using these values, the collection efficiency can be calculated at a wavelength of 600nm :

ηc = e−αd(1−e−αZ) = 0.91, (46)

from which we can get the external quantum efficiency of

ηe = ηiηc = 0.82. (47)

Finally, the responsivity becomes

R = ηe
q

hν
= 0.40 A/W, (48)

which is larger than what was achieved with the PN junction photodiode.

Figure 9: Calculated responsivity curve of
a silicon P-I-N photodiode with a 0.25µm
junction depth and a 300µm I-layer.

Fig 9 shows the calculated responsivity of the PIN
photodiode. For this example, we have assumed
a shallow junction depth of 0.25µm and a I-layer
thickness of 300µm. This will give us a very good
short-wavelength performance as well as a good
long-wavelength performance.

One of the tradeoffs with PIN photodiodes is the
response speed. Even though the entire I-layer is
depleted, the transit time through this layer will
still not be insignificant. This can reduce the speed
of the device.
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Silicon PIN Photodiode Structures

Figure 10: PIN photodiode structure

In silicon, PIN structures are fabricated by
starting from an intrinsic (or low-doped) sub-
strate. These are referred to as float-zone
(FZ) silicon in reference to the manufactur-
ing technique used to grow these ultra-low-
doped silicon crystals. The p-type and n-
type dopings are applied from opposite sides
of the substrate to create the PIN geome-
try. Although many different configurations
are used, one common configuration is shown
in Fig 10. Since the doping depths are usu-
ally limited to a few microns, the thickness
of the substrate essentially defines the thick-
ness of the I-layer. Substrate thicknesses of
200 − 500µm are fairly common in these de-
vices.

Figure 11: Spectral responsivity curve of a com-
mercial photodiode. Source: Luna Optoelectronics.

Fig 11 shows the published responsivity curve
for a commercially available silicon photodi-
ode. Comparing it with Fig 9, we can see that
their are very similar.
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Backside Illuminated Photodiodes

Figure 12: Backside illuminated silicon PN pho-
todiode

An alternate configuration known as backside-
illuminated photodiode is shown in Fig 12.
This is almost identical to Fig 7, except the
incident light enters the device from the
substrate-side. Despite the similarity to
front-side illuminated photodiodes, the con-
struction of these devices is fundamentally
different. Starting from the n-type substrate,
the p-type regions are doped first. However,
since substrates are generally several hun-
dred microns thick, illuminating this photo-
diode through the substrate will result in an
extremely poor collection efficiency. Most of
the photons will be absorbed in the substrate
too far from the space charge layer. This problem is avoided by thinning down the substrate to a
sufficiently small value to allow the photogenerated carriers to reach the space charge region.
Then the anti-reflection coating and contacts are applied to the backside. This is a complex
task because the thinning process has to be accurately controlled to reach within a few microns
of the space charge layer. Although this may seem like an unnecessarily complicated process,
backside illumination is highly favored in imaging applications. When electronic components
have to be integrated with photodetectors (which is always the case with cameras) all of the
electronics including the doping areas required for photodetectors can be made on one side,
allowing the backside free for optical coatings and optical interfacing. Despite the need to thin
down the substrate, backside illuminated detectors actually have a larger external quantum
efficiency. Many of the research-grade silicon image sensors in the market today use backside
illuminated geometries.

Infrared Photodiodes

As evident from Fig 6, silicon responds wavelength between 400nm and 1µm. For detecting
longer (or shorter) wavelengths, other semiconductor materials are required. A number of com-
mon materials are used for other wavelengths, which are listed below:

• In0.53Ga0.47As grown on a InP substrate gas a bandgap of 0.74eV. The corresponding wave-
length is 1.67µm. Therefore, it is commonly used for detecting wavelengths up to 1.6µm.,
especially for fiber telecommunication applications. Because the In0.53Ga0.47As layer is
grown epitaxially on the InP substrate, and has a smaller bandgap than InP (1.34eV), it will
exhibit absorption only in the In0.53Ga0.47As layer and in the substrate. If the In0.53Ga0.47As
layer is designed to be fully depleted, this can result in high speed response from the pho-
todiode. Nearly all of the SWIR cameras are built using an array of In0.53Ga0.47As detectors.

• InSb is a semiconductor very similar to GaAs. Unlike In0.53Ga0.47As, it is manufactured
as substrates. As a result, the device geometries are very similar to that of silicon. The
bandgap of InSb is 0.17eV, which corresponds to a wavelength of 7.3µm. However, the
intrinsic carrier concentration of InSb at room temperature is 2 × 1016cm−3, which is 6
orders of magnitude larger than silicon. Therefore, it behaves more like a metal than
a semiconductor at room temperature, resulting in poor diode performance, large dark
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currents and noise. This is overcome by operating the device at lower temperatures, for
example at liquid nitrogen temperature (77K). The intrinsic carrier concentration drops to
about 5× 109cm−3, which is much closer to silicon. The bandgap also increases to 0.23eV,
which corresponds to a wavelength of 5.4µm. As a result, cooled InSb photodiodes can
respond to wavelength between 3µm and 5µm, which ideally matches one of the atmo-
spheric transmission windows for infrared wavelengths, as well as most thermal imaging
spectra.

• Hg1−xCdxTe, or simply MCT, is a material that is synthesized by combining HgTe and CdTe.
Similar to AlxGa1−xAs, the entire range of composition has nearly the same lattice con-
stant. HgTe is actually a metal with a negative bandgap of −0.3eV, so it is unusable as a
detector material. However, CdTe has a bandgap of 1.5eV, corresponding to a wavelength
of 830nm. When alloyed together, Hg1−xCdxTe can be composed to span a wide range of
wavelengths from about 1.5µm to about 10µm. Therefore, it is a very versatile material.
However, one of the challenges with MCT detectors is the lack of suitably lattice-matched
and inexpensive substrates. It is typically grown on CdTe or CdZnTe substrates, which are
difficult to process and expensive. Similar to InSb, MCT detectors have to be used in a
cryo cooled environment to reduce the intrinsic carrier density. Nevertheless, MCT is one
of the most widely used detector material for infrared detection.

• Germanium shares many similarities with silicon. It has a bandgap of 0.66eV, which cor-
responds to a wavelength of 1.87µm. Therefore, it competes in the same the application
space as In0.53Ga0.47As. Ge can be grown as a single crystal substrate, whereas In0.53Ga0.47As
has to be grown as a crystalline thin film on an InP substrate. Despite this advantage for
Ge, In0.53Ga0.47As has become a more dominant material in this spectral range because
it has better noise characteristics. Additionally, In0.53Ga0.47As absorption spectrum ex-
tends past 1600nm, whereas the absorption in Ge reaches a peak near 1550nm, and then
drops sharply. As a result, nearly all telecommunication products operating at 1.55µm use
In0.53Ga0.47As instead of Ge.

Modulation Response of PN and PIN Photodiodes

The response times of photodiodes are determined primarily by the carrier transit time. It is
dominated by the slowest carrier in the system. It can be written as

|r| = R√
1 + (ωtr)

2
, (49)

where tr is the largest transit time in the system. We also argued that the largest transit time is
equal to the carrier lifetime τn or τp (the collection distances Zn and Zp are determined by the
minority carrier lifetimes). One way to increase the modulation response of photodiodes is by
decreasing the minority carrier lifetime. In silicon, this is on the order of 10µs, depending largely
on doping concentration and material quality. In In0.53Ga0.47As, these lifetimes are on the order
of 10ns. Therefore, In0.53Ga0.47As photodiodes are intrinsically faster than silicon photodiodes.
Using these numbers, we can calculate that the 3dB frequency in a silicon photodetector is
27.5MHz, and with In0.53Ga0.47As it is 27.5GHz. The recombination lifetimes in germanium is also
on the order of 10µs, which is another reason why In0.53Ga0.47As is preferred over Ge.

From equation (49), the 3dB frequency of the photodetector can be expressed as

f3dB =

√
3

2πtr
. (50)
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The modulation response is identical to the LED modulation response we examined earlier.

Besides choosing a material with a smaller recombination lifetime, we can also modify the ab-
sorbing region in a semiconductor to reduce the transit time. The recombination lifetime be-
comes the maximum transit time only when excitons are created at large distances from the
space charge layer. If we can limit the generation of excitons closer to the space charge layer, it
will become possible to reduce the transit time regardless of the recombination lifetime. This
was the main idea behind heterostructure photodiodes.

Heterostructure Photodiodes

We examined heterostructures under LEDs and laser diodes. Besides their ability to confine
carriers and reach population inversion at lower injection currents, they have advantages in
photodetectors as well. Specifically, they can be used to limit absorption only to areas of high
fields (space charge regions). This can significantly increase the collection efficiency as well as
the transit time of the collected carriers.

Figure 13: In0.53Ga0.47As/InP heterostruc-
ture PIN photodiode

For example, consider an In0.53Ga0.47As/InP pho-
todiode structure as shown in Fig 13. The
In0.53Ga0.47As layer is sandwiched between an n-
type InP substrate and a top layer of p-type
InP. Photons with energy smaller than 1.27eV, but
larger than 0.74eV will travel through the top InP
layer without any absorption. Therefore, the ef-
fect of the junction depth has been eliminated,
Absorption begins when the photons enter the
In0.53Ga0.47As I-layer. Once the photons exit the
In0.53Ga0.47As layer, they will travel without any
further absorption. Therefore, we can consider
the InP layers as transparent windows surround-
ing the active material. Additionally, since the I-
region will be fully depleted, transit time through
this layer will be the only factor contributing to the
total transit time. Since the electric field is large in the space charge layer, this transit time will
be very short. Since no photons will be absorbed in the p-type and n-type InP layers, we will
not have any contributions from the transit time through the outlying n- and p- regions with
low electric fields. In other words, Zn and Zp will be zero.

The expression for collection efficiency will become

ηc = 1− e−αD, (51)

where D is the thickness of the In0.53Ga0.47As I-layer. Compared to equation (16), we can see
that there is no contribution due to absorption in the region above the photodiode. The average
electric field in the I-layer will be

Ē =
Vbi − Va

D
. (52)

The drift velocity will be
vp = µpĒ. (53)
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This equation is valied only at low field values. At high fields, the velocity will reach saturation.
Nevertheless, once the drift velocity is known, the transit time can be written as

tr =
D

vp
. (54)

Here we have assumed that holes travel slower than electrons, because the longest transit time
will dominate the whole process.

One disadvantage of the collection widths Zn and Zp being zero is that it will also reduce col-
lection efficiency. Any photons that are transmitted out the bottom InP will not be absorbed.
Fortunately, compared to silicon, the absorption coefficient of In0.53Ga0.47As is very high, which
partly compensates for this effect. Nevertheless, the transit time could be reduced even further
by making the In0.53Ga0.47As I-layer thinner. This can result in very high speed photodetectors,
at the expense of a lower collection efficiency. However, some of these photons can be re-
covered by utilizing a reflector on the substrate to recycle it through the In0.53Ga0.47As layer.
This effectively creates a resonant cavity, and are known as resonant-cavity-enhanced (RCE)
photodetetcors.

Example

For example, if the total voltage Vbi − Va is equal to 5V, and the In0.53Ga0.47As layer thickness is
5µm, the electric field in the space charge layer will be

E =
Vbi − Va

D
=

5

5× 10−4
= 1× 104 V/cm. (55)

The hole mobility in In0.53Ga0.47As is 250 cm2/Vs. The drift velocity of holes in the space charge
layer will be

vp = µpE = 2.5× 106 = cm/s (56)

However, the saturation velocity of holes in In0.53Ga0.47As is 2 × 105cm/s. Clearly we cannot
exceed the saturation velocity. Therefore, the hole velocity will be saturated, resulting in a
transit time of

tr =
D

vp
=

5× 10−4

2× 105
= 2.5 ns. (57)

The resulting 3dB modulation frequency is

f3dB =

√
3

2πτ
=

√
3

2π × 2.5× 10−9
= 110 MHz. (58)

Additionally, assuming a wavelength of 1.55µm, we can also calculate the collection efficiency.
The attenuation coefficient in In0.53Ga0.47As at 1.55µm wavelength is about α = 4000/cm. This
results in a collection efficiency of

ηc = 1− e−αD = 0.86. (59)

Assuming an internal quantum efficiency of ηi = 1.0, the responsivity becomes:

R = ηiηc
q

hν
= 1.08 A/W. (60)
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It is possible to reduce the I-layer width and increase the modulation bandwidth. For example,
if we reduce the In0.53Ga0.47As layer thickness to 500nm, the results will be:

E =
Vbi − Va

D
=

5

5× 10−5
= 1× 105 V/cm. (61)

The hole velocity will still be saturated. Therefore, the transit time will be

tr =
D

vp
=

5× 10−5

2× 105
= 0.25 ns. (62)

The resulting 3dB modulation and collection efficiency will be

f3dB =

√
3

2πτ
=

√
3

2π × 0.25× 10−9
= 1.1 GHz (63)

ηc = 1− e−αD = 0.18. (64)

As we can see, it is possible to achieve GHz response speed from heterostructure diodes by
trading off the collection efficiency with speed.

Photodiode Packages

Figure 14: A TO-5 package photodiode.
Source: Hamamatsu

Photodiodes come in a large number of different pack-
ages. The TO package is a very common package. The
symbol TO stands for Transistor Outline, but this ter-
minology is primarily historic and has little to do with
the component inside the package. A photodiode is
clearly a two-terminal device, but some packages con-
tain three pins. The third pin is the casing material
(which is typically grounded). Some packages will also
contain an integrated lens on the input window to fo-
cus the light onto the detector surface.

Figure 15: A plastic photodiode pack-
age similar to LEDs. Source: Osram

It is also very common to find photodiodes in a plas-
tic dome package similar to LEDs. The same features
of the dome that improve the extraction efficiency of
LEDs also improves the coupling efficiency of photodi-
odes. This configuration is particularly useful for de-
tecting ambient light arriving from all angles. All an-
gles within the frontal hemisphere will be converted a
smaller cone of angles incident on the photodetector,
which increases coupling compared to glacing angle in-
cidence.
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Homework 7
1. Consider a silicon PN junction photodiode with an internal quantum efficiency of 0.95, and

with a surface area of 500µm x 500µm. The substrate is a low-doped float zone silicon that
is n-type with ND = 1015/cm3. The top side is doped p-type with NA = 1018/cm3, forming
a junction 1µm below the incident surface. The incident surface is AR coated for normal
incidence such that all of the light is absorbed in the semiconductor. The photodiode
is reverse biased at a voltage of −5V. Look up the relevant parameters for silicon from
http://www.matprop.ru/.

• Assuming standard material values for silicon, and a long-diode approximation for
the n-side, an equivalent shunt resistance of 1 GΩ, calculate the dark current (reverse
sauration current of this diode).

• For an incident intensity of 100µW/cm2, calculate the collection width Z, and the
collection efficiency ηc at a wavelength of 632.8 nm.

• Calculate the external quantum efficiency and the responsivity at a wavelength of
632.8 nm.

• Estimate the 3dB modulation bandwidth of this photodiode.
Run this code
import k o t l i n . math .*
//Andrew Sarangan

fun main ( ) {
va l e ta I = 0 .95
val Area = 500e−4*500e−4
val d = 1 . 0 e−4
val ND = 1 . 0 e15
val NA = 1 . 0 e18
val Va = −5.0
val k = 8 .6173303 e−5
val q = 1 .602 e−19
val T = 300.0
val Vt = k*T
val muN = 1450.0 // at 1 e15
val muP = 300.0 // at 1 e18
val tauP = 200.0e−6 // at 1 e15
val tauN = 10 .0 e−6 // at 1 e18
val Dn = muN*Vt
val Dp = muP*Vt
val Lp = (Dp*tauP ) . pow ( 0 . 5 )
va l ni = 1 . 0 e10
val I s = q*Area * (Dn/d* ni . pow ( 2 ) /NA + Dp/Lp* ni . pow ( 2 ) /ND)
p r i n t l n ( ” I s = $ {”%.2 e ” . format ( I s ) } A ” )
va l Rshunt = 1 . 0 e9
val Idark = abs ( ( I s + abs ( Va ) /Rshunt ) * ( exp ( Va/ Vt ) −1.0) )
p r i n t l n ( ” Idark = $ {”%.2 e ” . format ( Idark ) } A ” )
va l Vbi = Vt* ln (NA*ND/ ni . pow ( 2 ) )
p r i n t l n ( ” Vbi = $ {”%.2 f ” . format ( Vbi ) } V ” )
va l epsilon0 = 8.85e−14 //F/cm
val eps i lonr = 1 1 . 6 8
val xp = ( 2 . 0* epsi lonr *epsilon0 /q*ND/NA* ( Vbi−Va ) /(NA+ND) ) . pow ( 0 . 5 )
p r i n t l n ( ” xp = $ {”%.2 f ” . format ( xp *1 .0 e7 ) } nm” )
val xn = ( 2 . 0* epsi lonr *epsilon0 /q*NA/ND* ( Vbi−Va ) /(NA+ND) ) . pow ( 0 . 5 )
p r i n t l n ( ” xn = $ {”%.2 f ” . format ( xn *1 .0 e7 ) } nm” )
val wavelength = 0.632 //microns
val kappa = 0.015953
val alpha = 4.0* PI /( wavelength *1 .0 e−4)*kappa
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p r i n t l n ( ” alpha = $ {”%.2 f ” . format ( alpha ) } /cm” )
val I n t e n s i t y = 100.0e−6 //uW/cm2
val Power = I n t e n s i t y * Area
p r i n t l n ( ” Power = $ { ” . 2 f ” . format ( Power ) } W” )
var Responsiv i ty = 0 .25 // I n i t i a l assumption ( A/W)
p r i n t l n ( ” Responsiv i ty = $ {”%.2 f ” . format ( Responsiv i ty ) } A/W” )
var I = 1 . 0
var i = 1
while ( abs ( ( Responsiv i ty * Power − I ) / I ) > 1 . 0 e−3) {

I = Responsiv i ty * Power
p r i n t l n(”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”)
p r i n t l n ( ” I t e r a t i o n = $ i ” )
p r i n t l n ( ” I = $ {”%.2 e ” . format ( I ) } A ” )
va l Znmax = I *tauN /(q*Area*NA) *muN/muP
p r i n t l n ( ” Znmax = $ {”%.2 f ” . format ( Znmax*1 .0 e7 ) } nm” )
val Zpmax = I *tauP /(q*Area*ND) *muP/muN
p r i n t l n ( ” Zpmax = $ {”%.2 f ” . format ( Zpmax*1 .0 e7 ) } nm” )
val Z = Znmax+Zpmax+xn+xp
p r i n t l n ( ” Z = $ {”%.2 f ” . format ( Z *1 .0 e4 ) } um” )
val Ep = I / (q*Area*muP*NA)
p r i n t l n ( ” Ep = $ {”%.2 e ” . format ( Ep ) } V/cm” )
val En = I / (q*Area*muN*ND)
p r i n t l n ( ” En = $ {”%.2 e ” . format ( En ) } V/cm” )
val Eav = ( Vbi−Va ) /( xn+xp )
p r i n t l n ( ” Eav = $ {”%.2 e ” . format ( Eav ) } V/cm” )
val etaC = exp(−alpha*d ) *(1.0−exp(−alpha*Z ) )
p r i n t l n ( ” eta_c = $ {”%.2 f ” . format ( etaC ) } /cm” )
val etaE = etaC* eta I
p r i n t l n ( ” eta_e = $ {”%.2 f ” . format ( etaE ) } ” )
va l hv = 1 . 24/ wavelength
Responsiv i ty = etaE/hv
p r i n t l n ( ” Responsiv i ty = $ {”%.2 f ” . format ( Responsiv i ty ) } A/W” )
i ++
}

va l dB3 = 3 . 0 . pow ( 0 . 5 ) / ( 2 . 0* PI*tauP )
p r i n t l n ( ” 3 dB Freq = $ {”%.2 e ” . format ( dB3 ) } Hz ” )

}

Output :
I s = 2 . 29 e−14 A
Idark = 5.00e−09 A
Vbi = 0 . 7 7 V
xp = 2 . 7 3 nm
xn = 2728 .30 nm
alpha = 3 1 7 2 . 0 1 /cm
Power = . 2 f W
Responsiv i ty = 0 .25 A/W
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
I t e r a t i o n = 1
I = 6 .25 e−08 A
Znmax = 0.08 nm
Zpmax = 64 .57 nm
Z = 2.80 um
Ep = 5 .20 e−07 V/cm
En = 1 .08 e−04 V/cm
Eav = 2 . 1 1 e+04 V/cm
eta_c = 0.43 /cm
eta_e = 0 .41
Responsiv i ty = 0 . 2 1 A/W
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
I t e r a t i o n = 2
I = 5 . 1 8 e−08 A
Znmax = 0.06 nm
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Zpmax = 53 .55 nm
Z = 2 . 7 8 um
Ep = 4 . 3 1 e−07 V/cm
En = 8.93 e−05 V/cm
Eav = 2 . 1 1 e+04 V/cm
eta_c = 0.43 /cm
eta_e = 0 .41
Responsiv i ty = 0 . 2 1 A/W
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
I t e r a t i o n = 3
I = 5 . 1 7 e−08 A
Znmax = 0.06 nm
Zpmax = 53 .42 nm
Z = 2 . 7 8 um
Ep = 4.30e−07 V/cm
En = 8.90e−05 V/cm
Eav = 2 . 1 1 e+04 V/cm
eta_c = 0.43 /cm
eta_e = 0 .41
Responsiv i ty = 0 . 2 1 A/W
3dB Freq = 1 . 3 8 e+03 Hz

• Look up the standard optical dispersion values for silicon (for example, from re-
fractiveindex.info), and plot the responsivity spectrum of this photodiode between
400nm and 1100nm assuming the same value of photocurrent as before.

Code (will not run on Kotlin Playground - requires local file of silicon dispersion)
import java . io . F i l e
import k o t l i n . math .*
//Andrew Sarangan

fun DoubleArray . in terpolate ( aVal : Double , bArray : DoubleArray ) : Double {
var locA : I n t = 0
t h i s .map { i t − aVal }

. forEachIndexed { i , v −>
i f ( i ! = t h i s . s i z e − 1 ) {

i f ( v * t h i s [ i + 1 ] <= 0 . 0 ) {
locA = i

}
}

}
va l x1 = aVal − t h i s [ locA ]
val x2 = t h i s [ locA + 1 ] − aVal
return bArray [ locA ] + x1 / ( x1 + x2 ) * ( bArray [ locA + 1 ] − bArray [ locA ] )

}

fun readIndex ( lambdaNM : DoubleArray , fileName : S t r ing ) : Pair <DoubleArray ,
DoubleArray > {
val l i n e s =

F i l e ( fileName ) . readLines ( ) // This i s a 3−column f i l e of wavelength (nm) , n ,
k

val fileLambda = DoubleArray ( l i n e s . s i z e )
val f i l e N = DoubleArray ( l i n e s . s i z e )
val f i l e K = DoubleArray ( l i n e s . s i z e )
var i = 0
for ( l i n e in l i n e s ) {

va l match = Regex ( ” ( [ \ \ d\\. − ]+) [\\ t \\s ] + ( [ \ \ d\\. − ]+) [\\ t \\s ] + ( [ \ \ d\\. − ]+) ” ) .
f ind ( l i n e )

fileLambda [ i ] = match ! ! . groupValues [ 1 ] . toDouble ( )
f i l e N [ i ] = match . groupValues [ 2 ] . toDouble ( )
f i l e K [ i ] = match . groupValues [ 3 ] . toDouble ( )
i ++
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}

va l n = lambdaNM .map { fileLambda . in terpo la te ( i t , f i l e N ) } . toDoubleArray ( )
va l k = lambdaNM .map { fileLambda . in terpo la te ( i t , f i l e K ) } . toDoubleArray ( )
return Pair <DoubleArray , DoubleArray > (n , k )

}

fun main ( ) {
va l nLambda = 1000 // Number of wavelength points
val lambda1 = 400.0
val lambda2 = 1100 .0
val dLambda = ( lambda2 − lambda1 ) / nLambda . toDouble ( )
va l lambdaNM = DoubleArray ( nLambda ) { lambda1 + i t * dLambda }

val ( n , k ) = readIndex ( lambdaNM , ” s i l i c o n . nk ” )
va l alpha = k . z ip ( lambdaNM) { k , lambdaNM −> 4 .0 * PI / ( lambdaNM / 1 . 0 e7 ) * k
} . toDoubleArray ( )

va l Z = 2 . 7 8 e−4
val d = 1 . 0 e−4
val e ta I = 0 .95
val R = lambdaNM

. mapIndexed { i , lambda −>
val etaC = exp(−alpha [ i ] * d ) * ( 1 . 0 − exp(−alpha [ i ] * Z ) )
va l etaE = etaC * eta I
etaE * ( lambda / 1 . 0 e3 ) / 1 . 2 4

}
. toDoubleArray ( )

R . forEachIndexed { i , R −> p r i n t l n ( ” $ { lambdaNM[ i ] } \ t$R\ t$ { alpha [ i ] } ” ) }
}

Figure 16: Solution

2. • A silicon photodiode is desired for a medical scanning application at a wavelength of
400 nm. Using the same material parameters as given above, design an appropriate
structure that would optimize the responsivity for 400 nm.

Junction depth is the primary factor affecting the short wavelength response. Though not
possible in practice, we can make the junction depth equal to zero to examine how it
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would affect the responsivity.

• Explain how PIN photodiodes increase collection efficiency compared to PN photo-
diodes.

Lower doping of the I region enlarges the depletion region, resulting in a larger collection
volume.

3. An In0.53Ga0.47As/InP photodiode has a responsivity of 0.9 A/W at a wavelength of 1350nm.
Assuming the internal quantum efficiency is 100%, what is the thickness of the In0.53Ga0.47As
layer?
Run this code
import k o t l i n . math .*
//Andrew Sarangan

fun main ( ) {
va l kappa = 0.104
val wavelengthUM = 1 .450
val alpha = 4.0* PI /( wavelengthUM *1 .0 e−4)*kappa
val e ta I = 1 . 0
val R = 0 .9
val etaC = R/ eta I *1 .24/ wavelengthUM
p r i n t l n ( ” eta_c = $ {”%.2 f ” . format ( etaC ) } ” )
va l D = 1 .0/ alpha * ln ( 1 .0/ ( 1 .0 − etaC ) )
p r i n t l n ( ” D = $ {”%.2 f ” . format (D*1 .0 e7 ) } nm” )

}

>>eta_c = 0 . 7 7
>>D = 1628 .93 nm
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Avalanche Photodiodes

Figure 17: Avalanche photodiode con-
figurationwith a thin P+multiplication
region at the N+ interface.

Avalanche photodiodes (also known as APDs) are pho-
todiodes with internal gain. With PN and PIN photo-
diodes, we saw that the external quantum efficiency
(EQE) is always smaller than 1.0. In APDs, the internal
gain can produce an EQE larger than 1.0. This is accom-
plished by biasing the photodiode with a high enough
reverse bias voltage to operate it close to its avalanche
breakdown regime. Avalanche breakdown is a mecha-
nism where each carrier (electron and hole) accelerate
and gain enough energy such that they produce more
electron-holes pairs by impact ionization. These are
known as secondary electrons and holes. These sec-
ondary electrons and holes accelerate and create even
more electron-hole pairs. Hence an avalanche of carri-
ers can be created from the first few electron-hole pairs
created by the incident photons (which are known as
primary electrons and holes).

Avalanche multiplication is produced by creating a thin
layer (M-layer) inside the PIN photodiode structure
with a very large internal bias field. This requires a
junction with a narrow space charge width. Since the
space charge width is inversely proportional to the
doping densities (equations (28) and (29)), we can cre-
ate such a layer at the junction between an N+ region
and a P+ region. This layer acts basically as a multiplier
of photogenerated carriers produced in the I-layer.

Figure 18: Illustration of carrier multi-
plication

Electrons and holes have different ionization coeffi-
cients αn and αp, which vary greatly from one semicon-
ductor material to another. The ratio between the two
coefficients has a profound impact on the gain as well
as the frequency response of the device.

The photogenerated carriers in the I-layer will enter the
M-layer as electrons, while the photogenerated holes
will enter the top P-type layer. The electrons entering
the M-layer will undergo impact ionization resulting in
many more electrons and holes. All of these electrons
will exit the M-layer and enter the N+ layer below it,
while all of the excess holes generated by impact ion-
ization will enter the I-layer above it.

Referring to Fig 19, we can write the growth of the elec-
tron drift current in the M-layer due to impact ionization as

dJn (z)

dz
= αnJn (z) + αpJp (z) . (65)

The total electron drift current exiting the M-layer will be the sum of the original electron current
injected from the I-layer into the M-layer, plus the excess electron current created by the impact
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Figure 19: Transit time model of an avalanche photodiode

ionization (which is equal to the excess hole current created by the same impact ionization):

Jn (Lm) = Jn (z) + Jp (z) . (66)

From this, we can write
Jp (z) = Jn (Lm)− Jn (z) . (67)

Equation (67) can be substituted into equation (65) to produce

dJn (z)

dz
= (αn − αp) Jn (z) + αpJn (Lm) . (68)

This differential equation can be solved to give:

z|Lm

0 =
1

(αn − αp)
ln [(αn − αp) Jn (z) + αpJn (Lm)]

∣∣∣∣Jn(Lm)

Jn(0)

(69)

Jn (Lm) = Jn (0)

[
(αn − αp)

αne−(αn−αp)Lm − αp

]
(70)

= Jn (0)


(
1− αp

αn

)
e−(1−

αp
αn

)αnLm − αp

αn


︸ ︷︷ ︸

G

(71)

We can associate the terms inside the square brackets as the avalanche gain, G. Additionally,
we can also express the gain in terms of the ratio of the ionization coefficients

k =
αp

αn
, (72)

resulting in

G =
(1− k)

e−(1−k)αnLm − k
. (73)

Depending on the value of the ratio k, we can make the following observations:

k = 0 : G = eαnLm (74)
k = ∞ : G = 1 (75)

k = 1 : G =
1

1− αnLm
. (76)
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When k = 0, the multiplication factor grows exponentially with the thickness of the M-layer.
When k = ∞, there will be no gain regardless of the M-layer thickness. This is understandable
because k =

αp

αn
= ∞ implies that αn is negligibly small compared to αp. This results in no gain

for electrons, which is the photogenerated carrier type being injected into the M-layer. When
k = 1, equation (73) becomes indeterminate. However, we can use L’Hospital’s rule to find its
convergence value as 1

1−αnLm
.

It is also possible to have a situation that will produce an indefinitely large gain. This will occur
when

e−(1−k)αnLm = k. (77)
This is an unstable condition, and must be avoided. Re-arranging equation (77), we can get

αnLm =
1

1− k
ln
(
1

k

)
. (78)

As k gets smaller, αnLm has to become very large for this instability to occur. In practical device
dimensions, k → 0 virtually guarantees that this condition will never occur except in very long
devices.

The value of k is a material property, and not something we can control. Materials with k = 0,
or small values of k are naturally better for APDs because they provide a classical amplification
factor with predictable gain values. Additionally, the excess noise factor F of the amplifier (to
be discussed later) is directly related to the APD gain and the k value as follows:

F = kM + (1− k)

(
2− 1

M

)
. (79)

A smaller k value would therefore lead to a smaller excess noise factor, which is typically de-
sired. The table below lists the k values for commonly used semiconductors.

Semiconductor k
Si 0.02-0.05
Ge 0.7-1.0

In0.53Ga0.47As 0.5-0.7

Silicon has the most optimal value of k. Ge is worse and is rarely used in APDs. In0.53Ga0.47As is
also widely used in 1.3µm & 1.5µm APDs for fiber telecommunication applications.

An important aspect in APDs is the build-up time needed to produce gain. This significantly
adds to the transit time, and hence affects the frequency response of the device. In a regular
heterostructure PIN photodiode, the transit time through the space charge layer was

tr =
D

vp
, (80)

where D is the thickness of the I-layer and vp is the drift velocity of the holes. We consider
holes instead of electrons for calculating the transit time because when both carriers move
simultaneously (in opposite directions), it is the slowest carrier that will determine the overall
transit time. In this case we are assuming the drift velocity of holes is smaller than that of
electrons. While that is true in PIN photodiodes, in APDs, the slowest transit process consists
of three terms:

tr =
D

vn
+ τm +

D

vp
, (81)

where τm is the build-up time in the M-layer. Considering a single electron generated at the left
edge of the I-layer, the first term D

vn
is the time it takes for it to reach the M-layer. τm is the time
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between when that electron enters the M-layer, and the time when the last hole from ionization
exits the M-layer back into the I-layer. Finally, D

vp
is the time required for that last hole to travel

through the I-layer and exit to the left. The build-up time τm is a bit involved to derive. It can,
however, be expressed approximately as

τm ≈ kGLm

vn
+

Lm

vp
. (82)

Because the M-layer is designed to contain a very large electric field, the values of vn and vp
will be well into the saturation regime. Therefore, we can write this as

τm ≈ kGLm

vn,sat
+

Lm

vp,sat
. (83)

The internal gain in APDs make them useful in applications where the photocurrent is small. As
we will see later, amplifying the signal immediately following detection helps to preserve the
quality of the signal during subsequent processing. Compared to photoconductors, the transit
time in APDs can be much smaller if they are built as heterostructures, which can lead to high
detection speeds.

Example

Consider an APD with an I-layer thickness of 25µm, M-layer thickness of 3µm, and is reverse
biased at −5V such that αn = 1× 105/cm, and k = 0.1. The built-in voltage is 0.7V.

The gain can be calculated as

G =
(1− k)

e−(1−k)αnLm − k
= 13.8. (84)

The electric field in the I-layer will be

E =
Vbi − Va

D
=

5.7

25× 10−4
= 2280V/cm. (85)

The drift velocity of electrons and holes in the I-layer will be

vn = µnE = 1400× 2280 = 3.2× 106 cm2/s (86)
vp = µpE = 450× 2280 = 1× 106 cm2/s. (87)

These are well below the saturation velocities of 1×107 cm/s and 7×106 cm/s for the electrons
and holes, respectively. Therefore, the electron and hole transit time through the space charge
layer will be

D

vn
= 0.78 ns (88)

D

vp
= 2.5 ns. (89)

The M-layer build-up time will be

τm ≈ kGLm

vn,sat
+

Lm

vp,sat
= 56 ps. (90)
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Finally, the total transit time will be

tr =
D

vn
+ τm +

D

vp
= 3.3 ns, (91)

resulting in a 3dB modulation frequency of

f3dB =

√
3

2πtr
=

√
3

2π × 4.6× 10−9
= 84 MHz. (92)

Geiger Mode APD

The APDs discussed so far are known as linear-mode APDs. The gain is treated as a constant such
that the number of electrons collected at the output is a multiple of the photocurrent. Hence
they are useful in analog and digital communication applications. APDs can also be operated
in another mode, known as Geiger-mode. In this regime, the gain is purposely designed to be
extremely large, and close to the unstable value outlined in equation (77). When photons are
incident, the large gain will trigger a nearly continuous avalanche of electrons - the current flow
never stops once it is triggered (i.e., infinite gain). This is useful in applications of detecting
signals above a minimum threshold, usually photon counting applications in certain medical
and quantum encryption technologies.
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Photoconductors

Figure 20: Simple photoconductor

Photoconductors are made from undoped, or lightly
doped semiconductors, with a fairly low carrier con-
centration. When light is incident, extra electron-
hole pairs will be generated. This will result
in an increased carrier concentration, and an in-
creased conductance. The increased conductance
will last until the last of the photo-generated car-
riers have been removed from the semiconduc-
tor.

Figure 21: Intensity profile inside
the semiconductor for short and long
wavelength radiations.

Consider a simple photoconductor configuration as
shown in Fig 20. The surface of the material is typi-
cally anti-reflection coated to minimize reflection and
to maximize absorption. If the incident intensity is Ii
W/cm2, the intensity profile inside the semiconductor
will decay with depth as

I (z) = Iie
−αz (93)

where α is the attenuation coefficient of light in the
material. As discussed earlier, this attenuation will be
a strong function of wavelength. Short wavelengths
will be absorbed very quickly, while long wavelengths
will penetrate deeper into the semiconductor, as illus-
trated in Fig 21.

Figure 22: Illustration of field distribution in the photoconductor and the approximate repre-
sentation of this field

When a voltage is applied at the two electrodes, a two-dimensional electric field distribution
will be created as shown in Fig 22. This field distribution can be determined only by solving the
Poisson’s equation in conjunction with the current continuity equation. This is not a trivial task.
However, we can make several major simplifications that can allow us to proceed forward. Be-
cause the carrier concentration has its highest value near the surface, and because the electric
field strength between the two electrodes is also highest near the surface, the vast majority of
current will flow horizontally near the surface. The field value near the surface will be ∆V

L , where
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∆V is the applied voltage difference between the electrodes, and L is the distance between the
electrodes. The field will decline as we move deeper into the substrate. The exact field distri-
bution will depend on the permittivity of the material and the electrode spacing, but we can
make some approximations. We will assume that the electric field is uniform and parallel with
a value of ∆V

L up to a depth of ZF inside the semiconductor.

Each exciton created within the depth ZF will be separated into an electron and hole. This
is the collection region of the photoconductor. Excitons created outside this region will not be
separated. Of course, in reality the collection region will not be that distinctly separated, but we
will make this assumption to make the calculations easier. Therefore, the collection efficiency
becomes:

ηc =
(
1− e−αZF

)
. (94)

Figure 23: Illustration of primary hole and secondary electron transport

Each exciton will release an electron and a hole. Consider, for example, this exciton to be cre-
ated at the left edge of the photoconductor. After the exciton is separated, the hole will start
drifting towards the right electrode. The electron from the same exciton will quickly exit the
semiconductor to the left. However, to maintain charge neutrality, another electron will enter
from the right electrode and proceed towards the left electrode. This is known as a secondary
electron, because it is not the same electron that was created by the photon. If the secondary
electron reaches the left electrode while the hole is still in transit, another secondary elec-
tron may be emitted. This process will continue until the hole recombines and disappears,
or reaches the right electrode. Therefore, multiple electrons could transit the device before
the hole disappears. In other words, multiple electrons (one primary electron and multiple
secondary electrons) will be collected at the terminal for each exciton that was created. This
results in what is known as the photoconductive gain, which can be written as

G =
τ

tr,n
(95)

where tr,n is the electron transit time defined as

tr,n =
L

µnE
=

L2

µn∆V
, (96)

and τ is the smaller of either the hole lifetime or the hole transit time

τ = τp or L2

µp∆V
. (97)
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In practice, trap states will be abundant in the semiconductor, especially near the surface, which
will effectively reducing the hole mobility, which leads to a larger gain than what the equation
predicts.

In this description, we have assumed that µnτn ≫ µpτp. In other words, we have assumed
that the electron can drift to a much larger distance than the hole. This is true in almost all
semiconductors, but the opposite condition can also be considered, which will lead to an inverse
relationship for G as compared to equation (95).

The external quantum efficiency becomes

ηe = ηiηcG, (98)

and the current output will be
I =

Pi

hν
ηe (99)

from which we can get the responsivity

R =
ηe
hν

. (100)

The dark current (with no illumination) will be due to the intrinsic carrier concentration in the
semiconductor. This can be calculated from

ID = qZFWni (µn + µp)E (101)

= qZFWni (µn + µp)
∆V

L
. (102)

Example

Consider a photoconductor made of intrinsic crystalline silicon with an electrode spacing of
L = 500µm, and a width of W = 5mm. The refractive index of silicon at a wavelength of λ = 600
nm is 3.943 − j0.025. The attenuation coefficient, therefore, is α = 4π

λ × 0.025 = 5236 /cm.
The mobilities values are µn = 1400cm2/V/s and µp = 450cm2/V/s, and the minority carrier
recombination lifetimes are τn = τp = 10µs. Assume ηi = 0.9, with an applied voltage of 5V, and
the incident intensity is Ii = 10 mW/cm2. Also assume that the collection distance is ZF = 5µm.
The intrinsic carrier concentration is 1.5× 1010 cm−3.

First, lets calculate the dark current value:

ID = qZFWni (µn + µp)
∆V

L
= 0.11µA. (103)

The collection efficiency will be

ηc =
(
1− e−αZF

)
= 0.93. (104)

The electron and hole transit times will be

tr,n =
L2

µn∆V
= 0.36µs (105)

tr,p =
L2

µp∆V
= 1.1µs. (106)
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Since the lifetime τp was given as 10µs, the photoconductive gain will be limited by the hole
transit time, resulting in

G =
tr,p
tr,n

= 3.1. (107)

The external quantum efficiency becomes

ηe = ηiηcG = 2.6. (108)

Finally, the responsivity is
R =

ηe
hν

= 1.25A/W. (109)

For the given intensity of Ii = 10 mW/cm2, the incident power will be

Pi = IiWL = 0.25mW. (110)

The resulting output current will be

I = Id +RPi = 0.31mA. (111)

Modulation Response of Photoconductors

The gain in photoconductors at least partly comes from a long recombination lifetime τp, or a
hole transit time tr,p, whichever is smaller. Unfortunately, has the effect of reducing the modu-
lation response of photoconductors.

The amplitude of the small signal responsivity becomes:

|r| = R√
1 + (ωτ)

2
, (112)

where τ is the hole transit time, or the hole recombination time, whichever is smaller.

Figure 24: Modulated responsivity of the photo-
conductor as a function of frequency

This is identical to the expression we had for
LEDs. Therefore, we can conclude that the
3dB nodulation frequency is

f3dB =

√
3

2πτ
. (113)

Example (Contd.)

In the previous example, we had τ = 1.1µs.
Therefore, the 3dB modulation frequency will
be 250 kHz. The frequency response plot cor-
responding to this case is shown in Fig 24.
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Photoconductive Devices

The majority of commercially available photoconductors are made of CdS, CdSe or a mixture of
both. The bandgap of CdS is 2.42eV, which corresponds to a wavelength of 512nm. The bandgap
of CdSe is 1.74eV, which corresponds to a wavelength of 712nm. Most of the commercial devices
use polycrystalline films which results in these films absorbing beyond their band edge. The
typical absorption spectrum of CdS photocells is from 400nm to 700nm. For longer wavelengths,
PbS (Eg = 0.37eV) and PbSe (Eg = 0.27eV) are commonly used. These correspond to bandgap
wavelengths of 3.35µm, and 4.6µm, respectively.

Figure 25: Typical configuration of a CdS photo-
cell. Source: Adafruit.

The devices typically use an inter-digitated
contact geometry to maximize the sensitiv-
ity by increasing the effective W without in-
creasing the surface area. An example is
shown in Fig 25.

For infrared wavelengths, narrow bandgap
materials such as PbSe, PbS, InSb and
Hg1−xCdxTe are used. However, very narrow
bandgap materials will behave like metals at
room temperature (excessive intrinsic carrier
concentrations) so they must be cryogenically
cooled during operation.

One of the drawbacks of photoconductors
compared to photodiodes is the higher dark
current. As we can see from equation (102), the dark current is dictated by the intrinsic carrier
concentration. Ideally, the intrinsic carrier concentration should be as small as possible. Even
though silicon has an intrisic carrier concentration of 1.5 × 1010cm−3 at room temperature, in
practice, this is extremely difficult to realize. There is always some level of unintentional doping
from the crystal growth process, and carrier concentrations are usually a factor of two or three
above this theoretical value. For example, in the above example, if the background doping of
the silicon was 1×1012cm−3 (which is still considered lightly-doped), the dark current will be 100
times higher, or 11µA. Photodiodes, on the other hand, are not susceptible to this effect. Other
than for the construction of PIN diodes, an intrinsic semiconductor is not require to create a PN
junction. In fact, lower dark currents can be achieved by doping the diode higher, not lower.
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Thermal Detectors
Thermal detectors are an indirect measurement of radiation. They absorb light and convert
that energy into heat. The resulting temperature rise is measured using a thermoresistive ele-
ment (bolometer) or a pyroelectric element (thermopile). Thermoresistive elements produce a
change in resistance, and pyroelectric elements will produce a voltage in response to a temper-
ature change. Unlike photon detectors (photoconductors and photodiodes), thermal detectors
are intrinsically slower. Their response time will be determined by the thermal time constant
of the system rather than the minority carrier lifetimes.

Bolometers

The sensitivity of bolometers is defined by the change in resistance for a given incident radi-
ation intensity. It is determined by several main factors: (1) thermal resistance between the
sensing element and the surrounding, (2) optical absorption of the sensing element, and (3)
the temperature coefficient of resistance (TCR) of the sensing element. The response time of
the bolometer is determined by the thermal conductivity and the thermal mass of the sensing
element.

To maximize sensitivity, the sensing element must have a very large thermal resistance to the
ambient environment. This will allow the sensing element to reach a higher temperature for
a small incident radiation. For fast response, the thermal mass has to be kept small. For this
reason, bolometers are often made as suspended thin films, as shown in Fig 26. The thin film
configuration ensures that the thermal mass remains low. The suspension allows the film to
have minimal thermal contact with the substrate. The thermal conductivity can be reduced even
further if the air surrounding the film is removed to create a vacuum. However, the thin film
configuration also makes it difficult to absorb radiation within one pass. Therefore, a reflector
is often used to create a second pass. Additionally, the air (or vacuum) gap between suspended
film and the substrate can be used to optimize a cavity resonance. Since the film has to meet
multiple requirements, it is typically created as a stack consisting of several films of different
materials. One film is optimized as the sensor element with a large temperature coefficient of
resistance. Another film is designed to provide maximum optical absorption, and another film
is designed for best structural support.

Figure 26: Typical bolometer design
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Metal films such as platinum, nickel and titanium have a positive temperature coefficient (PTC).
In other words, their resistance increases with increasing temperature. Other materials such
as amorphous silicon (a-Si) and vanadium oxide (VOx) are also used, which have a negative
temperature coefficient (NTC) of resistance. The support film is usually silicon nitride (Si3N4).
This is a mechanically strong film that can also be easily fabricated. The absorber can be a
combination of metals or semiconductors. The bottom reflector is usually a metal such as gold.

The bolometer structures are fabricated using MEMS (Micro-Electro-Mechanical Systems) pro-
cesses. This also allows the bolometers to be made in very small sizes and duplicated many
times in an array format to provide imaging capability. An example is shown in Fig 27.

Figure 27: One pixel of a MEMS micro-bolometer array. Source: Hamamatsu

The response of the bolometer can be written as

C
dT

dt
= Pa + Pr −

1

Rt
(T − Tb) (114)

where C is the thermal mass, Pa is the radiative power absorbed by the sensor, Rt is the thermal
resistance, Pr is the joule heating from the electrical bias, and Tb is the temperature of the
substrate. This is basically an energy balance equation between the power absorbed by the
sensor and the power lost to the ambient. Under steady state condition, the solution becomes

0 = Pa + Pr −
1

Rt
(T − Tb) (115)

T = Tb + (Pa + Pr)Rt. (116)

The responsivity can be defined as the change in temperature for a change in incident power,
resulting in

R =
∆T

∆Pa
= Rt. (117)

In other words, the sensitivity of the bolometer is equal to its thermal resistance. A bolometer
that is highly thermally isolated from its ambient will produce a greater response compared to
one that is directly attached to a thermally conductive heat sink. The units of responsivity is in
K/W, which is different than in photodiodes and photoconductors. The high thermal resistance
is normally accomplished by the suspended structure.

We can also derive an expression for the dynamic response of the bolometer. Assuming the
system maintains a constant bias power Pr, we can determine the small signal response of this
bolometer. Using a similar technique as we did with other detectors, we can get an expression
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for the small signal response of the bolometer. By setting the small signal quantities

T = To + δTejωt (118)
Pa = Pao + δPae

jωt, (119)

we can substitute these into equation (114) to get

jωCδTejωt =��Pao + δPae
jωt −��Pr −������1

Rt
(To − Tb) +

1

Rt
δTejωt. (120)

The non-varying terms cancel out as indicated by the strikeouts, resulting in

jωCδTejωt = δPae
jωt +

1

Rt
δTejωt (121)

δT

δPa
=

Rt

1 + jωRtC
(122)∣∣∣∣ δTδPa

∣∣∣∣ =
Rt√

1 + (ωτ)
2

(123)

where the time constant is
τ = RtC. (124)

Following the same process as before, the 3dB frequency becomes

f3dB =

√
3

2πτ
. (125)

The thermal time constant τ is the product of the thermal mass and thermal resistance, which
is an identical formula to the RC time constant encountered in electrical circuits consisting of
a capacitor and a resistor. A faster time response would require a small thermal mass and a
small thermal resistance. The small thermal mass is achieved by having a thin film structure as
the sensing element. However, the small thermal resistance is opposite of what we needed for
a large responsivity. This conflicting requirement is a design trade-off. The responsivity and
the speed has to be balanced depending on the intended application.

The electrical resistance of the sensor is used as a direct measure of the temperature. Assuming
a linear model, the resistance of the sensor can be expressed as

R = Ro (1 + α (T − To)) (126)

where α is the temperature coefficient of resistance (TCR), and Ro is the resistance when the
temperature is To. The value of α can be positive or negative depending on the type of material
(negative for metals, positive for semiconductors).

Figure 28: Bridge circuit configuration
for sensing the bolometer tempera-
ture

Measuring the resistance of the sensor is not trivial be-
cause the measurement itself will heat up the bolome-
ter. This is represented byPr in equation (114). Further-
more, the thermal resistance Rt and the thermal coef-
ficient of resistance α will also be a functions of tem-
perature, which will create nonlinearities in the mea-
surements. Therefore, instead of measuring the resis-
tance, a better technique is maintain a constant tem-
perature in the bolometer (which corresponds to a con-
stant bolometer temperature) by adjusting the electri-
cal power Pr. The value of Pr required to maintain a
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constant temperature will then become the measure
of the incident radiation being measured. This can be
done using a bridge circuit configuration as shown in Fig 28. Three temperature-insensitive
fixed resistors are used with the fourth resistor in the bridge as the bolometer. The branches
are balanced by adjusting the pulse width of the source until zero current is observed between
the two branches. The pulse width can then be used as a measure of the temperature of the
sensor.

Radiant Power in Thermal Imaging

Figure 29: A simple imaging system using a thin
lens

The radiant power incident on a single pixel
of a thermal camera can be calculated if we
know the f/# of the camera. This radiant
power is independent of the distance of the
object. In other words, a distant object and a
close-up object will produce the same power
on the pixel. This feature enables us to cal-
ibrate the intensity in terms of the temper-
ature of the object, assuming we know the
emissivity of the source. This can be derived
as follows:

Referring to Fig 29, and using the thin lens ap-
proximation, we have

1

Xo
+

1

Xi
=

1

f
(127)

where Xi is the image distance, Xo is the object distance, and f is the focal length of the lens.
If D is the diameter of the aperture, this can also be written as

D

2Xo
+

D

2Xi
=

D

2f
(128)

tan θo + tan θi = tan θa (129)

where θa is
tan θa =

D

2f
. (130)

If f ≫ D, then θa will be small, resulting in tan θa ≈ sin θa ≈ θa. Therefore,
D

2f
= sin θa = NA (131)

which is the numerical aperture of the lens. This approximation holds only for small values of
numerical aperture.

The magnification can be defined as

M =
tan θi
tan θo

=
tan θa − tan θo

tan θo
. (132)

Using the paraxial approximation, this becomes

M =
θa − θo

θo
. (133)
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In realistic implementations, Xo ≫ Xi. This results in θo ≪ θo. Therefore,

M =
θa
θo

. (134)

This can also be expressed in terms of the surface area of the object and image, as

Ao

Ai
= M2 (135)

where Ao is the area of the object and Ai is the area of the image.

Thermal emission from a point source is given by Plank’s law,

ϕp
e (λ) = ϵ

2hc2

λ5

1

ehc/λkT − 1
, (136)

where ϵ is the emissivity of the object and ϕe (λ) is in the units of power per unit solid angle per
unit surface area per unit wavelength. As derived earlier, the emission from a two-dimensional
surface is

ϕs
e (λ, θ) = ϕp

e (λ) cos θ. (137)
The units of ϕs

e (λ, θ) is also in power per unit solid angle per unit surface area) Therefore, total
power emitted by a surface per unit wavelength whose area is Ao will be

AoΦe (λ) = Ao

∫ 2π

0

∫ θo

0

ϕp
e (λ) sin θ cos θ dϕ dθ (138)

= 2πAo

∫ θo

0

ϕp
e (λ) sin θ cos θ dθ (139)

= πϕp
e (λ) Ao sin2

θo. (140)

Substituting equations (134) and (135) results in

Φe (λ) = πϕp
e (λ) AiM

2 sin2
θo (141)

= πϕp
e (λ) Ai

(
θa
θo

)2

sin2
θo. (142)

Furthermore, using the paraxial approximation, we can set sin θo ≈ θo. Along with the definition
of numerical aperture, we can get

Φe (λ) = πϕp
e (λ) Ai sin2

θa (143)
= πϕp

e (λ) Ai (NA)
2
. (144)

Finally, the power received on the image area Ai becomes

Pe =

∫ λ2

λ1

πϕp
e (λ) Ai (NA)

2
dλ (145)

We can see that equation (145) does not contain object or image distances. It depends entirely
on the size of the image and the numerical aperture of the lens.

Example

We will assume that the IR camera has a germanium lens with an f/# of 16. The transparency
range of germanium is from 1.7µm to 10µm, which effectively blocks nearly all solar illumination
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from reaching the camera. Given a pixel size of 5µm×5µm, we can calculate the power reaching
the pixel when the object temperature is 50◦C.

The numerical aperture of the lens is

NA = sin θa =
D

2f
=

1

2
× 1

16
= 0.03125 . (146)

The power can be calculated as

Pe =

∫ 10µm

1.7µm
π
2hc2

λ5

1

ehc/λkT − 1
(5µm × 5µm)× 0.031252 dλ = 4.8pW. (147)

Next, if the thermal resistance Rt of the microbolometer is 1 × 1010 K/W, the 50◦C object will
raise the pixel temperature by 48mK.
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Homework 8
1. Consider an avalanche photodiode (APD) which has an ionization ratio of k = 1.

• Show that the expression for gain will converge to 1
1−αnLm

.

• Explain how this can lead to an unstable gain.
• Explain how this aspect can be utilized as a Geiger mode APD.

2. A microbolometer thermal camera has a germanium lens (AR coated), and it is being used
to measure the temperature of objects.

• Explain why ordinary lenses made out of silica glass cannot be used in this camera.

Silica glass is not transparent at infrared wavelengths beyond 3um.

• Assuming the camera has an aperture stop of f/5.6, and the pixel size on the sensor
is 50µm x 50µm, calculate the radiative power received on one pixel from 35◦C, 100◦C
and 300 ◦C ideal blackbody sources.
Assuming a range of 1.7um to 10um:
Run this code
import k o t l i n . math .*
//Andrew Sarangan

fun main ( ) {
va l f = 5 .6
val angle = atan ( 1 . 0 / f / 2 . 0 )
va l Area = ( 5 0 . 0 e−6) . pow ( 2 )
val h = 6.62607015e−34
val c = 3 .0 e8
val k = 1.38064852e−23
val dlambda = 0 .01

for ( Tc in l i s t O f <Double > ( 3 5 . 0 , 100 .0 , 300 .0 ) ) {
var Es = 0.0
val Tk = Tc +273 .0
var lambda = 1 . 7
while ( lambda < 1 0 . 0 ) {

va l phi = 2 .0*h*c . pow ( 2 ) / ( ( lambda *1 .0 e−6) . pow ( 5 ) ) /
( exp ( h*c /( lambda *1 .0 e−6*k*Tk ) ) −1.0)*dlambda *1 .0 e−6

Es += phi*PI* s in ( angle ) . pow ( 2 ) *Area
lambda += dlambda

}
p r i n t l n ( ” T = $ { Tc } C ; Pe = $ {”%.2 e ” . format ( Es ) } W” )

}
}

>>T = 35 .0 C ; Pe = 2 .93 e−09 W
>>T = 100.0C ; Pe = 9 . 3 1 e−09 W
>>T = 300.0C ; Pe = 8 .61 e−08 W
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Image Sensors
Image sensors consist of a two-dimensional array of photodetectors to measure the distribution
of light intensity. The unique challenge in image sensors, as compared to discrete photodetec-
tors, is due to the complexity involved in integrating a very large number of photodetectors onto
a single semiconductor chip and collecting all the signals and converting them into a usable
form. Some of the performance metrics of image sensors are pixel count, pixel size, linearity,
dynamic range and noise.

In the following section, a brief description of the major image sensor technologies is discussed.
In all of these approaches, the electrical signaling, photodetector biasing and multiplexing is
done using silicon electronics. This makes silicon the preferred material for making photode-
tectors. That way, all of the components can be made on the same chip at the same time. How-
ever, silicon has limitations, especially with respect to its detection range. Silicon cannot de-
tect photons with energy smaller than its bandgap - which corresponds to 1.1µm in wavelength.
Therefore, infrared imaging at 1.5µm or 3µm requires a fundamentally different approach.

CMOS Image Sensors

Figure 30: CMOS active pixel sensor.

CMOS stands for Complementary Metal Ox-
ide Semiconductor. This is a manufactur-
ing process used for producing digital elec-
tronic chips. Photodetectors are analog com-
ponents, and it is not easy to integrate
high quality photodetector into a CMOS plat-
form. However, over the past decade, new
CMOS technologies have emerged that in-
clude good quality photodetectors, resulting
in the widespread availability of CMOS image
sensor. The integrated circuit is fabricated
just like any other digital electronic circuit. It
contains a two-dimensional array of PN junc-
tion photodiodes, along with an amplifier and
a biasing circuit for each photodetector. Each pixel also contains a color filter (red, green or
blue) and a microlens to increase the fill-factor of each pixel.

In the early days of electronic image sensors, CCD’s (charged coupled devices) were the pre-
ferred technology. However, CMOS image sensors have come a long way in the past 10 years, and
have surpassed the performance of CCDs. These can be found in nearly all consumer electronic
cameras. Pixel sizes are on the order of 1µm, and pixel counts of 8 million is not uncommon.
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CCD Image Sensors

Figure 31: Charge Coupled Device (CCD)

Charge coupled devices are metal-
oxide semiconductor (MOS) capac-
itors. They are made on a sili-
con substrate with a thin dielec-
tric spacer (usually silicon dioxide),
and a transparent polysilicon elec-
trode. Assuming a lightly p-doped
substrate, a positive voltage is ap-
plied to all the electrodes. This will
repel all the holes under the elec-
trodes and attract the minority car-
rier electrons. However, since the
density of electrons in a p-type sub-
strate is very small, they would need to drift from deep within the substrate to reach the surface.
This process will take some time, especially if the field is small. Before the capacitor reaches
its equilibrium charge, any photons absorbed in the vicinity of the electrode will produce a
more immediate source of electrons, which will quickly increase the negative charges under
the electrode. Therefore, the process can be described as a slow rate of charging due to minor-
ity carrier drift and thermal generation of electrons in the absence of photons, and a faster rate
of charging depending on the photon flux.

One of the distinguishing features of CCD image sensors compared to CMOS is the lack of any
pixel-level amplifiers or decoding circuitry. Charges accumulated in the capacitor are read out
by shifting the charges from one capacitor to the adjacent capacitor. They are read one at a time
by a conversion circuit located at the end of each row. This type of charge movement makes
it possible for the entire sensing area to consist of just capacitors with no other electronic
components. This gives CCDs a very high fill factor and very high sensitivity. Although CMOS
sensors have virtually overtaken CCDs in consumer applications, CCD sensors are still used in
some applications that require high sensitivity, such as astronomy and spectroscopy.

Figure 32: Charging rate of a CCD due to back-
ground electrons and photon flux

Compared to CMOS sensors, CCDs have
greater sensitivity and greater fill factors be-
cause almost the entire area of the pixel is
occupied by the optical sensor. Therefore, no
microlenses are used on CCDs.
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Infrared Image Sensors

Figure 33: Black body emission from a 0◦C, 37◦C
and 100◦C sources.

Silicon can only detect up to 1.1µm in wave-
length. While this is suitable for visible cam-
eras, there are many applications that re-
quire image sensing in the infrared spectrum.
1.3−2.0µm wavelength range (known as short
wave infrared - SWIR) is important in laser
imaging. A phenomenon known as night glow
produces an emission in the upper atmo-
sphere that has a peak near 1.7µm, making
this wavelength range suitable for night vi-
sion. The atmosphere has a transparent win-
dow in the 3 − 5µm spectral range (known
as mid-infrared - MWIR), as well as in the
8 − 12µm range (long-wave infared - LWIR).
These are important bands for thermal imag-
ing, where black body radiation from objects
near room temperature can be detected.

For example, Fig 33 shows the black body
emission spectra from 0◦C, 37◦C (human body
temperature), 100◦C sources. The human
body temperature peaks at around a wavelength of 9µm, and the 100◦C objects peaks at 7.5µm.
Clearly, image sensors operating in this regime will be able to utilize these emissions to produce
images that do not rely on reflected sunlight or artificial light.

Although there are many semiconductors that can detect photons in these wavelength ranges,
the fact that the photodetectors have to interface with silicon for biasing the detectors and
collecting the signals is a major technological bottleneck. This requirement has lead to the
hybridized detector configuration where silicon is used for electronics and another material is
used as the photodetector.

Figure 34: Backside illuminated In0.53Ga0.47As
photodiode hybridized to a silicon readout in-
tegrated circuit (ROIC)

Fig 34 shows a configuration commonly used
in image sensors using photodetector ma-
terials other than silicon. The photodetec-
tor array is constructed using a backside-
illuminated thinned-substrate geometry. Ex-
ample materials include In0.53Ga0.47As for the
1.3−1.7µm spectral range, InSb 3−5µm range,
and MCT for 3− 12µm range. The electric cir-
cuitry, including amplifiers and biasing cir-
cuits for each photodetector pixel is made
on a silicon CMOS platform using an identical
array configuration. The two chips are then
hybridized together using indium solder to
make the electrical connections. This process
is known as flip-chip bonding. This configura-
tion has allowed non-silicon photodetectors
to exist on a silicon platform. As discussed
earlier, for wavelengths longer than 3µm, the
semiconductors have to be cooled to very low
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temperatures. This introduces numerous challenges, such as matching the thermal expansion
coefficients between silicon and the detector material. Nevertheless, this is currently the most
widely used configuration for infrared imaging.

Figure 35: Image from an
uncooled microbolometer
thermal camera

An alternate, lower-cost option for imaging infrared has also
emerged using microbolometers as the sensors. Because these
do not rely on a semiconductor bandgap, they can be operated
at room temperature. However, they are much slower than pho-
todetectors because their operating speeds are limited by the
thermal time constant RtC outlined in equation (124). They are
also significantly more noisier. Known as ”uncooled thermal im-
agers”, these sensors cost significantly less than cooled photon
detectors, and are becoming widely available in consumer appli-
cations.

Materials used in Image Sensors

While the purpose of the detector material is to absorb the pho-
tons and convert them to an electrical current, the optical com-
ponents used for focusing the image have to be transparent to
the incident radiation. For example, in the visible spectrum, sil-
icon is commonly used as the photodetector material, and silica glass is used for making the
optical components. The bandgap of silicon is 1.1eV, so it absorbs wavelengths shorter than
1.1µm. Although silica glass is not a semiconductor, it is transparent for wavelengths longer
than about 350nm. For wavelengths shorter than 350nm, fused silica or quartz can be used.
However, as we saw in our earlier discussions, the collection efficiency of silicon photodetec-
tors will decline at very short and very long wavelengths. Therefore, the useful range of most
silicon photodetectors with a silica glass optics is about 400nm to 1000nm.

Most commercial visible cameras restrict the spectral range of silicon photodetectors to the
visible spectrum (400nm to 700nm). This avoids artifacts from radiation that may be present in
the near infra-red (700nm to 1100nm). This can be accomplished with a short-pass filter with a
cutoff wavelength at 700nm.

Infrared cameras use a variety of other materials. Short-wave IR (SWIR) cameras use In0.53Ga0.47As
as the detector material, which has a bandgap of 0.74eV. Therefore, it is suitable for detecting
wavelengths in the range of 1.0µm− 1.7µm. The reason for this specific stoichiometry has to do
with lattice matching. In0.53Ga0.47As has the same crystal structure and lattice constant as InP,
which is a common substrate. This allows In0.53Ga0.47As to be produced more easily than other
stoichiometries of In1−xGaxAs.

Mid-wave IR (MWIR) cameras use InSb or Hg1−xCdxTe. The bandgap of InSb at 77K is 0.23eV,
which corresponds to a wavelength of 5.4µm. Therefore, it can be used to detect 3µm − 5µm,
which is the MWIR band. InSb is also produced as substrates, so lattice-matching to another
material is not necessary.

Hg1−xCdxTe is more difficult because it is not lattice matched to any common substrates. In
most implementations, silicon is used as the substrate with CdTe as an intermediate layer to
buffer the Hg1−xCdxTe. Because none of the layers are lattice-matched, the quality of the re-
sulting Hg1−xCdxTe will be lower compared to other materials, resulting in high dark currents
and lower responsivities. The advantage of Hg1−xCdxTe, however, is that it can span a large
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range of bandgaps, from -0.3eV (which is actually a metal) to 1.6eV, depending on the value of
x. The bandgap of Hg0.7Cd0.3Te is 0.24eV at 77K, and is suited for MWIR.

Hg0.79Cd0.21Te has a bandgap of 0.1eV at 77K. This can be used in the 8µm−12µm band, known as
the long-wave IR (LWIR) band. This band also contains the peak emission wavelength of mod-
erately warm objects in the 0C to 100C range, making it an important band for thermal imaging.
But the high cost of Hg1−xCdxTe and the requirement for cryogenic cooling has been a bar-
rier for widespread commercial applications. As a result, microbolometers have emerged as
the competition to Hg0.7Cd0.3Te in the LWIR. These are uncooled detectors, and rely on direct
temperature sending rather than bandgap detection. The most common material used for tem-
perature sensing is VOx, which is an oxide of vanadium that has a high temperature coefficient
of resistance (TCR). They are manufactured as suspended membranes as was already discussed
in Fig 27.
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Solar Cells
Photovoltaic Mode

The photodiodes that we examined so far were for the purpose of detecting signals, not for
generating power. A photodiode can also produce power under illumination. This is known
as the photovoltaic mode of operation. Whether a photodiode consumes power or produces
power depends on its operating point in the I-V curve.

As stated earlier, the I-V curve of a photodiode under illumination is

I =

(
Is +

|Va|
Rshunt

)(
eVa/Vt − 1

)
− Iph, (148)

where Iph is the photocurrent, and Rshunt is the shunt resistance to account for additional re-
combination processes as discussed earlier. The I-V curve is shown in Fig 36. There are four
quadrants on this plot. When the product I×V is positive, it represents power being consumed
by the photodiode. This happens in the lower left and upper right quadrants. I × V would be
negative in the upper left and lower right quadrants, but only the lower right quadrant contains
a portion of the I-V curve. This is the photovoltaic operational region of the photodiode. The
magnitude of I×V in this quadrant will depend on the exact operating point of the photodiode.
This will depend on the illumination intensity and the load attached to the photodiode. The de-
sired operating point is where the I×V is a maximum (with a negative sign), and corresponds to
the largest rectangle contained under the I-V curve as indicated in Fig 36. This operating point
can be calculated if all the parameters of the diode are known.

Figure 36: Photovoltaic quadrant of a photodiode, and the point of maximum power generation

Using equation (148), we can write the expression for power as

P = IV = Va

[(
Is +

|Va|
Rshunt

)(
eVa/Vt − 1

)
− Iph

]
. (149)
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Fig 36 also shows the calculated value of I × V , where we can see it reaches a peak negative
value.

Solar Irradiance

The efficiency of solar cells is defined as the electrical power produced divided by the electro-
magnetic power incident on the surface of the photodetector. The incident power is a function
of the solar illumination and angle of incidence as well as atmospheric absorption. Therefore,
it is a highly variable quantity. However, the solar illumination reaching the earth’s atmosphere
is a very predictable quantity based on the blackbody radiation theory. This radiation intensity
is designated as AM0 radiation (zero atmospheric absorption), and has a value of approximately
1355 W/m2. AM1 is designated as one atmosphere worth of absorption, which occurs at normal
incidence on the equator. AM2 would be two atmospheres worth of absorption, which would
occur at an inclination of 60-deg. AM1.5 is used as the standard average illumination in the
northern hemisphere, which is about 1000 W/m2.

AM0 intensity can be calculated by treating the sun as a black body source with a surface tem-
perature of 5778 K. The emission spectrum from a point source is characterized by Plank’s law

ϕp
e (λ) = ϵ

2hc2

λ5

1

ehc/λkT − 1
. (150)

given in power per unit area per unit solid angle per unit wavelength. As discussed previously,
spectral radiance of a surface will have an additional cos θ term due to Lambert’s projection:

ϕs
e (λ, θ) = cos θ ϕp

e (λ) . (151)

To find the emission from a unit surface area of the sun, we have to integrate over the hemi-
sphere angles.

ϕs
e (λ) =

∫ 2π

0

∫ π/2

0

ϕs
e (λ, θ) sin θ dθ dϕ (152)

=

∫ 2π

0

∫ π/2

0

ϕp
e (λ) cos θ sin θ dθ dϕ (153)

= 2πϕp
e (λ)

sin2
θ

2

∣∣∣∣∣
π/2

0

(154)

= πϕp
e (λ) . (155)

The total power (over all wavelengths) per unit area emitted by the surface becomes:

Φe =

∫ ∞

0

ϕs
e (λ) dλ. (156)

Setting T = 5778K, we can calculate the power emitted by a unit surface area of the sun:

Φe =

∫ ∞

0

πϵ
2hc2

λ5

1

ehc/λkT − 1
dλ = 63.1 MW/m2 (157)

One square meter of the sun projects over a much larger distance by the time the light reaches
earth. We can calculate this based on the area of the sun and the distance from the sun. The
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surface area of the sun is 4πR2
s where Rs is the radius of the sun (which is 432,170 miles). The

receiving surface area at earth’s average orbital distance is 4πD2 where D is the distance be-
tween the earth and sun (92.96 million miles). Therefore, we can find the intensity reaching the
earth’s atmosphere by evaluating:

Φr = Φe
R2

s

D2
, (158)

where Φr represents the power received (hence the subscript r).

Φr = 1355 W/m2
. (159)

This is the solar energy value used for calculating illumination on solar cells on near-earth
orbiting satellites. On the surface of the earth, the power will be much lower due to atmospheric
absorption. As stated before, average values for AM1.5 is around 1000 W/m2, but this can vary
greatly depending on atmospheric conditions.

Solar Cell Efficiency

We noted earlier that the spectral responsivity of a photodiode depends on the thickness of the
I-layer and the junction depth:

R = ηe
q

hν
. (160)

For the purpose of this calculation, we will assume a perfect photodiode with an infinitely thick
I-layer and a nearly zero junction depth, and a 100% internal quantum efficiency. This allows
both the short and long wavelength regimes to be absorbed, and results in a collection efficiency
of 100% for all wavelengths up to the bandgap wavelength to give a responsivity value of

R =
q

hν
for hν > Eg (161)

= 0 for hν < Eg. (162)

Next, we multiply this spectral responsivity by the solar irradiance spectrum to get the resulting
current per unit area of the photodetector:

J =
R2

s

D2

∫ λg

0

ϕs
e (λ)Rdλ (163)

=
R2

s

D2

∫ λg

0

ϕs
e (λ)

(
qλ

hc

)
dλ (164)

= π
R2

s

D2

∫ λg

0

(
2qc

λ4

1

ehc/λkT − 1

)
dλ (165)

For silicon, using Eg = 1.1eV results in a bandgap wavelength of λg = 1.127µm. Substituting
this into equation (165) results in a photocurrent of 518 A/m2. In other words, AM0 illumination
on a one square meter of a perfect silicon solar cell will produce a current of 518 Amps.

This current can be used in the diode equation (148) to find the bias point that produces maxi-
mum power. In order to perform this calculation, we need Is. We derived the expression for Is
earlier as

Is = qA

(
Dn

Ln

n2
i

NA
+

Dp

Lp

n2
i

ND

)
. (166)
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Figure 37: I-V and power curve of a solar cell with the maximum current of 518 Amps at AM0
illumination

This, along with Rshunt, can be used to plot the power vs voltage curve, and the find the maximum
power value.

Assuming silicon, we can use representative values for the material parameters and n- and p-
type doping. Using NA = 1018 cm−3, ND = 1018 cm−3, we can get Ln = 20µm, Lp = 10µm, along
with τn = 8µs, τp = 2µs, Dn = 0.5 cm2/s, Dp = 0.5 cm2/s, ni = 1.5 × 1010 cm−3. Substituting
these into equation (166) results in Is = 0.2nA for a photodiode with an area of 1m2. For now,
lets assume Rshunt → ∞. We can plot the I-V curve of the photodiode and find the point of
maximum power. This is shown in Fig 37. The maximum power value works out to 324 W. Since
the incident AM0 power is 1355W, the solar cell efficiency is 324/1355 = 24%.

The diode saturation current Is and Rshunt have a significant effect on the maximum power
value that can be obtained from a solar cell. We can expand equation (149) and group the terms
separately to allow for a better interpretation:

P = VaIs

(
eVa/Vt − 1

)
︸ ︷︷ ︸
Ideal diode dissipation

+
V 2
a

Rshunt

(
eVa/Vt − 1

)
︸ ︷︷ ︸

Nonideal recombination dissipation

− VaIph︸ ︷︷ ︸
Generated power

(167)

The power generated by the photocurrent is the last term, VaIph. Part of this power is expended
on producing the diffusion currents in the diode. This is the first term, VaIs

(
eVa/Vt − 1

)
, and it

is an inevitable component even in a perfect diode. However, we can minimize this power loss
by making the value of Is small. The second term is the power lost to the shunt resistor. This
really consists of several non-ideality factors from Auger recombinations, Shockley-Read-Hall
recombinations and leakage currents. The remaining power is what is dissipated in the external
circuit as the useful power.

Increasing the efficiency of solar cells requires the following considerations:

• From equation (167), we can see that increasing the photocurrent Iph will increase the gen-
erated power. This means, with all other factors remaining fixed, for a given illumination
spectrum, using a smaller bandgap material will allow more of the longer wavelengths to
be absorbed.
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• Reducing Is will reduce the internal power dissipation in the diode. From equation (166),
Is (per unit area) is determined by doping of the PN junction as well as the intrinsic car-
rier density ni. The diffusion coefficients Dn and Dp as well as Ln and Lp also depend on
the doping values. In general, the lifetimes τn and τp will decrease as doping values are
increased, resulting in a both Dn/Ln and Dp/Lp becoming larger. Therefore, increasing
doping to reduce Is is not a straightforward effect. Additionally, as we saw earlier, the in-
trinsic carrier density ni is inversely related to the bandgap of the material (see equation
(168)). This is opposite of the statement we made earlier for increasing the photocur-
rent. Therefore, this effect partially negates the benefits of increasing the photocurrent
by choosing a smaller bandgap material. Additionally, temperature also plays a role in ni.
Reducing temperature will decrease ni, but active cooling of solar cells consumes energy,
so it is not always a practical solution.

• A larger Va will generate higher power. This is the voltage across the diode at the point
of maximum power. It is a numerically computed value, but it depends strongly on Is and
Vt. A larger Is will increase Va, but as we stated previously, a larger Is also increases the
internal power consumption.

• Increasing the shunt resistance (or decreasing the leakage currents) will improve the ef-
ficiency of solar cells. These leakage currents get worse at high doping levels, which is
opposite of the requirement for achieving a low Is.

As we can see, there are several competing factors, and we cannot increase the efficiency of
solar cells by simply changing one factor.

Figure 38: Solar cell efficiency vs bandgap of the material, assuming all other material parame-
ters remain the same as silicon.

We can examine what would happen hypothetically if the bandgap of the material is changed.
For this analysis, we will keep the same diffusion coefficients as in the above silicon solar cell
example, but modify just the bandgap. Besides the cut-off wavelength of absorption, the largest
change in the diode from a different bandgap will be in the intrinsic carrier concentration. Ear-
lier we saw that the intrinsic carrier concentration was

ni =
4
√
2

h3
(πkT )

3/2
(mcmv)

3/4
e−Eg/2kT . (168)
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At room temperature, this was about 1.5 × 1010cm−3 for silicon. Though it is somewhat ficti-
tious, we can evaluate ni by allowing the silicon bandgap to change, and examine how the solar
cell efficiency changes. This is shown in Fig 38. Also shown on the right hand axis is the gen-
erated photocurrent per square meter from solar radiation. We can see that the bandgap of
silicon is fairly close to the optimum value required to harvest the maximum energy from solar
illumination, making it not only highly efficiency, but also inexpensive.

Solar Cell Structures

Figure 39: Best Research-Cell Efficiency Chart. Source: NREL

To capture the maximum possible energy, solar cells have to be made in large panel sizes. In-
stead of being a few microns or millimeters, they have to be on the order of meters. This makes
the fabrication process vastly different than other types of photodetectors. Even inexpensive
materials like silicon become unfavorable at such size scales. Therefore, alternative techniques
are being explored. The use of solar concentrators is one such method. Concentrators utilize
reflectors to focus light onto a smaller solar cell. This makes it possible to use a high efficiency
solar cell without having to make them in large sizes. However, this will require more compli-
cated hardware and installations.

Cost, durability and manufacturing cost are some of the largest driving factors in solar cells
more than efficiency. Thin film solar cells (on glass or other substrates) are more economi-
cal compared bulk crystalline silicon. As a result, a significant portion of the solar market is
comprised of thin film solar cells, using materials such as CdTe, amorphous silicon, and copper
indium gallium selenide (CIGS). Even though their efficiencies are lower than silicon, they are
less expensive to manufacture. Solar cells based on organic films are even less expensive than
inorganic films, but their efficiencies are even lower. All of these areas are currently undergoing
significant development.

For very specialized applications such as spacecraft and autonomous systems, it is possible to
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achieve efficiencies higher than the values depicted in Fig 38. This is done using a technique
known as multi-junction diode configuration. By creating a photodiode with junctions consist-
ing of multiple junctions each made from a different bandgap material, it is possible to achieve
values as high as 45%. The multi-junctions are stacked in such a way that short wavelengths are
absorbed by the first junction, and the longer wavelengths by the lower junctions. By separat-
ing the the solar spectrum into separate segments for each junction, it is possible to achieve a
greater overall efficiency.

Anti-reflection coatings are an important aspect of solar cells. The native reflection from silicon
is nearly 40%, so applying a coating will significantly increase the efficiency. However, all thin
film coatings will exhibit angular sensitivity. In other words, it is not possible to design a thin
film anti-reflection coating that will work for all incidence angles. In solar cells, this becomes
an important limitation because the angle difference between sunrise and sunset can be 180-
degrees. The solution commonly used is to rotate the solar panels to always provide a normal
incidence, but this adds to the mechanical complexity of an installation. Alternative methods
are being explored to provide angular-insensitive anti-reflection coatings, such as moth-eye
structures.

Solar Cell Arrays and Load Balancing

As evident from our discussion so far, a solar cell will provide optimum power only when it
is operated near its peak-power bias point. The voltage supplied by the solar cell at this peak
power will be in the range of 0.6−0.7V. The exact voltage will depend on the diode characteristics
as well as the illumination conditions. Since most electrical loads require much higher voltages
than 0.6− 0.7V, solar cells are typically connected in series to drive such loads.

Figure 40: A two-
dimensional grid of solar
cells to create the voltage
and current required to
drive a load

Most solar panels are made up of cells arranged in a two-
dimensional configuration. For example, a 1 square meter panel
could consist of 10, 000 cells of 1cm ×1cm in size. The cells are
then connected in series and parallel depending on the specific
load it is designed to drive. For example, connecting 100 cells in
series will increase the operating voltage 100-fold. Connecting
100 of those units in parallel will increase the current 100-fold.
Therefore, it is possible to achieve any combination of voltage
and power as required to drive the load.

However, loads are never static, nor is the illumination on the
solar panel. Therefore, it becomes necessary to make real-time
adjustment to the load to compensate for these effects. This is
done by the load balancer. It is basically a DC/DC converter that
varies the effective impedance seen by the solar panel to always
maintain operation at the peak power bias point.
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Homework 9
1. Calculate the maximum photocurrent density that can be produced in a perfect GaAs solar

cell (in A/m2) on a satellite in orbit around Mars. If Is = 10−8A/m2, and Rshunt = ∞,
calculate the peak power. Then, calculate how much larger the GaAs panels have to be
compared to the ones around earth’s orbit to get the same power.
Run this code
import k o t l i n . math .*
//Andrew Sarangan

fun main ( ) {
va l h = 6.62607015e−34 //Plank ’ s constant
val c = 3 .0 e8 //Speed of l i g h t
val k = 1.38064852e−23 //Boltzmann constant
val q = 1 .602 e−19 // E l e c t r o n i c charge
val T = 5778 .0 //Temperature of the sun
val Rs = 432170 .0 //Radius of sun ( miles )
// val D = 92 .96 e6 // Distance to earth ( miles )
va l D = 134 .4 e6 // Distance to mars ( miles )
// val Eg = 1 . 1 //Bandgap of s i l i c o n
val Eg = 1 . 4 2 //Bandgap of GaAs
val lambda1 = 0 . 1 // In tegra t ion s t a r t (um)
val lambda2 = 20.0 // In tegra t ion end (um)
val dlambda = 0.001 //(um)

val lambda = DoubleArray ( ( ( lambda2−lambda1 ) /dlambda ) . t o I n t ( ) ) { lambda1+ i t *dlambda
}
val P = lambda .map{ lambda −>

PI * ( Rs/D) . pow ( 2 ) *2.0*h*c . pow ( 2 ) / ( ( lambda *1 .0 e−6) . pow ( 5 ) ) / ( exp ( h*c /(
lambda *1 .0 e−6*k*T ) ) −1.0)*dlambda *1 .0 e−6

} . toDoubleArray ( )
va l I = lambda .map{ lambda −>

i f ( lambda < 1 . 24/ Eg ) {
PI * ( Rs/D) . pow ( 2 ) *2.0*q*c / ( ( lambda *1 .0 e−6) . pow( 4 ) ) / ( exp ( h*c /( lambda *1 .0 e

−6*k*T ) ) −1.0)*dlambda *1 .0 e−6
}
else { 0 . 0 }
} . toDoubleArray ( )

p r i n t l n ( ” Inc ident r a d i a t i v e power = $ {”%.2 f ” . format ( P . sum ( ) ) } W” )
p r i n t l n ( ” Photocurrent = $ {”%.2 f ” . format ( I . sum ( ) ) } A ” )

}

>> Inc ident r a d i a t i v e power = 652 .51 W
>>Photocurrent = 188.44 A

The incident radiation is 652/1355 = 48% that of earth. Therefore, we would need roughly double
the size for each solar panel to produce the same power as on earth.

2. Lasers can be used for beaming power straight to drones. Consider a drone with a downward-
facing silicon photovoltaic cells and a 10W 950nm ground-based laser system. Assume the
entire laser beam is incident on the photovoltaic cell on the drone. Assuming an exter-
nal quantum efficiency of 100%, calculate the photocurrent generated in the cells. If the
photovoltaic cell has Is = 0.1nA with Rshunt = ∞, calculate the energy conversion effi-
ciency. Explain why it is possible to get higher conversion efficiency compared to solar
illumination.
Run this code
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import k o t l i n . math .*
//Andrew Sarangan

fun main ( ) {
va l wavelength = 0.950
val Responsiv i ty = wavelength /1 . 24
val Pin = 10 .0
val Iph = Pin* Responsiv i ty
p r i n t l n ( ” Iph = $ {”%.2 f ” . format ( Iph ) } A ” )

va l I s = 0 . 1 e−9
val Vt = 0.026

fun IV ( Va : Double ) : Double {
val I = I s * ( exp ( Va/ Vt ) −1.0) − Iph
val P = I *Va
return P

}

val Pmax = abs ( DoubleArray (1000) { i t * 0 . 0 0 1 5 } .map{ IV ( i t ) } . min ( ) )
p r i n t l n ( ” Pmax = $ {”%.2 f ” . format (Pmax) } W” )
p r i n t l n ( ” E f f i c i e n c y = $ {”%.2 f ” . format (Pmax/Pin *100) }%”)

}

>> Iph = 7 .66 A
>>Pmax = 4 . 18 W
>> E f f i c i e n c y = 41.78%
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Noise

Figure 1: Measurement on a time-varying signal
with a fixed integration time

Noise is the unavoidable random portion
of any measurement. In photonic systems,
noise arises due to the statistical nature of
photons and electrons. Typically, a measure-
ment is performed on a time-varying signal
by integrating the signal for repeating inter-
vals of time, known as the integration time.
This becomes the smallest increment of time
for that system. The number of electrons col-
lected during each integration time, Qn, rep-
resents the measurement. This is illustrated
in Fig 1.

Due to randomness in every system, the num-
ber of electrons collected within each in-
tegration window will have an expectation
value (mean) with a standard deviation. The
signal-to-noise ratio is defined as the square
of the ratio between the expectation value
and the standard deviation. That is:

SNR =
( n̄
σ

)2
=

n̄2

σ2
(1)

where n̄ is the expectation value and σ is the
standard deviation, defined by:

n̄ =
1

N

N∑
0

Qn (2)

σ2 =
1

N

N∑
0

(Qn − n̄)
2
. (3)

Quantum Shot Noise

The arrival rate of electrons and photons are mathematically modelled as a Poisson’s distribu-
tion. This makes the math easier because the standard deviation of a Poisson’s distribution is
equal to the square root of the mean. Therefore,

σs =
√
n̄s. (4)

As a result, the SNR becomes:

SNR =
n̄2
s

σ2
s

=
n̄2
s

n̄s
= n̄s. (5)

σs is also known as the quantum shot noise because it arises from the discrete nature of the
electrons and photons. In the absence of any additional noise, this becomes the fundamental
limit of SNR.
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We can also express n̄s and σs in terms of incident power and integration time. If the incident
power is P , and the integration time is Ti, and the external quantum efficiency of the detector
is ηe, the average number of electrons collected during each integration time will be

n̄s =
ηePTi

hν
. (6)

We can also express the integration time Ti as a sampling rate B, where

B =
1

Ti
. (7)

Therefore, the mean and variance become

n̄s =
ηeP

Bhν
(8)

σs =

√
ηeP

Bhν
(9)

resulting in

SNR =
n̄2
s

σ2
s

=
ηeP

Bhν
. (10)

From this expression we can see that the SNR can be improved by increasing the incident power
and the external quantum efficiency, or by decreasing the sampling rate (which is the same as
increasing the integration time). Photon energy also plays a role because for a given power
there will be more photons if the wavelength of those photons is longer.

Shot noise is also known as fundamental noise, because it is the ultimate limit of what can be
achieved. A signal quality simply cannot improve beyond the shot noise limit.

Thermal (Johnson) Noise

The random motion of electrons due to thermal energy is not captured by the shot noise model.
Shot noise only contains the noise due to the quantized nature of electrons. It can be thought
of as a discretization noise similar to the noise in a digital system.

Electrons are constantly in motion with an average thermal energy kT . Even without an applied
bias, free electrons will always be in motion due to this energy. However, they will be aligned
in random directions, so the average current along any specific direction will be zero. But the
instantaneous current will not be zero. As a result, during an integration period, the number of
electrons collected can be slightly higher, or slightly lower, than the signal electrons.

The mean and deviation of the thermal noise current can be derived (not shown here) as:

Īt = 0 (11)

σIt =

√
4kTB

R
(12)

where R is the equivalent resistance of the circuit. The number of electrons collected per inte-
gration time becomes:

n̄t = 0 (13)

σt = σIt

1

Bq
=

√
4kT

q2RB
(14)
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The fact that n̄t is zero should not be surprising. This is simply because no net current can
be generated due to the random thermal motion in a resistor. The standard deviation is the
spread around this mean value. Clearly, it gets larger at higher temperatures. It also gets larger
in smaller resistors, as well as with smaller sampling rate. It may seem odd that σt gets better (i.e
smaller) with increasing sampling rate. But this behavior is identical to the shot noise deviation
we discussed in equation (9). When this deviation is considered in combination with the mean
signal value ( which also declines linearly with increasing B, instead of as the square root of B),
the net result is a decline in the SNR with increasing B, which is consistent with expectations.

Dark Current Noise

All photodetectors will allow some current to flow even without any optical illumination. This
is known as the dark current, ID. In the case of a reverse-biased photodiode, this will be the
reverse saturation current of the diode Is. In the case of photoconductors, dark current will be
due to the conductivity of the intrinsic semiconductor. It may seem that dark current is a simple
offset which can be subtracted out, effectively making it zero. While that is truel, the shot noise
from the dark current cannot be subtracted because it is random in nature. Assuming dark
current subtraction, we can get:

n̄D = 0 (15)

σD =

√
ID
qB

. (16)

Other Sources of Noise

Depending on the type of photodetector, there could be other sources of noise. For example,
carrier generation and recombinaton rates can produce a noise known as G-R noise in pho-
toconductors. There is also another type of noise that increases with decreasing frequency,
known as 1/f noise.

Total Noise

In terms of the shot noise, thermal noise and dark current noise sources, we can write the mean
and variance of the whole system as

n̄ = n̄s + n̄t + n̄D = n̄s (17)
σ2 = σ2

s + σ2
t + σ2

D. (18)

As a result, the expression for SNR becomes:

SNR =
n̄2
s

σ2
s + σ2

t + σ2
D

. (19)
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Example

Consider a 1µW optical signal at a wavelength of 0.6µm wavelength incident on a silicon pho-
todetector with an external quantum efficiency of ηe = 0.8. The detection circuitry is at room
temperature (300K), and has an equivalent resistance of 150Ω. The sampling rate is 10MHz. We
can find the total SNR as follows:

First find the average number of electrons collected per integration time:

n̄s =
ηeP

Bhν
= 2.41× 105. (20)

The shot noise deviation is equal to the square root of the mean number of detected electrons.

σs = 491. (21)

Next, find the thermal noise quantities:

n̄t = 0 (22)

σt =

√
4kT

q2RB
= 2.07× 104. (23)

Clearly, in this example, thermal noise is far greater than shot noise.

We can calculate the overall SNR as

SNR =
n̄2
s

σ2
s + σ2

t

= 135. (24)

SNR is often expressed in dB, which is 10 log SNR. Therefore,

SNR = 21.3 dB. (25)

Noise Equivalent Power (NEP)

Noise-equivalent power, or NEP, is the incident power that will produce a SNR value equal to 1.0.
This is also a useful performance metric because it indicates the minimum detectable power.
Signals with SNR < 1.0 cannot be detected because it will be buried inside the noise. In fact,
SNR = 2 is often considered the lowest detectable limit in practice.

NEP can be calculated by setting
n̄2
s

σ2
s + σ2

t + σ2
D

= 1. (26)

Substituting the expressions for shot, thermal and dark current noise terms results in(
ηeP
Bhν

)2
ηeP
Bhν + 4kT

q2RB + ID
qB

= 1. (27)

NEP can also be interpreted as the smallest difference in signal that can be detected.

175



Andrew Sarangan

Example (continued)

We can also calculate the NEP by solving for P in equation (27). This requires a nonlinear nu-
merical solver. From this, we can get P = 86nW, which is the minimum detectable power. The
given power of 1µW is clearly far greater than this value.

Figure 2: SNR vs temperature for P=1µW.

Looking at the deviation values
from this example, we can see that
the system performance is domi-
nated by the thermal noise, because
σs ≈ 500 and σt ≈ 20, 000. There-
fore, it is possible to improve the
performance by reducing the tem-
perature. For example, if the reduce
the temperature to 100K, the SNR
will increase from 21.3dB to 26.1dB,
which is a more than twice the orig-
inal SNR. The plot of SNR vs temper-
ature is shown in Fig 2.

It is also possible for the system
to switch from being thermal noise
limited to shot noise limited, or vice
versa. This can happen at a certain
temperature, or at a certain input power level. We can find the power level at which the sys-
tem will have equal contribution of noise from the shot-noise and thermal noise (at 300K). This
power can be calculated by setting the shot noise deviation equal to the thermal noise deviation
and solving for the P . That is: √

ηeP

Bhν
=

√
4kT

q2RB
(28)

P =
4kThν

q2ηeR
= 1.78 mW. (29)

Therefore, when operating well above this power level, temperature changes will not have a
significant effect on the SNR. The plot of the noise variances vs temperature is shown in Fig 3,
as well as the SNR on the right hand scale.

Fig 3 shows the shot noise and thermal noise deviations and SNR as a function of incident power,
for T = 300K. The NEP is also identified on the plot.

Detectivity

Earlier we saw that NEP was a measure of the minimum detectable signal. Optical receivers
normally consist of a photodetector and bias circuit, and thermal noise often becomes the
limiting case. A smaller value for NEP implies that the receiver has a high sensitivity. Detectivity
is defined as the inverse of the NEP, such as

D =
1

NEP
. (30)
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Figure 3: SNR, thermal and shot noise deviations vs input power for T=300K.

Noise Equivalent Temperature Difference (NETD)

Whereas NEPD was the smallest difference in incident power that that can be detected by the
photodetector, in thermal detectors, we can also express this as a the temperature difference
of the emitting source. In other words, NETD is the smallest difference in temperature that the
detector can sense, assuming a blackbody radiation.

Amplifier Noise

Amplifiers are commonly used to increase the strength of signals. However, an amplifier will
amplify the signal and the noise equally, resulting in no improvement. In other words, louder
does not necessary mean better. In fact, since amplifiers are never perfect, they will add their
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own noise to the signal, which actually makes the amplified output worse than the input. How-
ever, an amplifier can improve the SNR in some circumstances. It depends on if the thermal
noise is added before or after the amplifier.

Amplifier noise is accounted for by a dimensionless parameter F known as the excess noise
factor. If an input signal has a mean n̄ and a standard deviation σ, the output signal from the
amplifier will have a mean Mn̄ and a standard deviation of

√
FMσ, where M is the amplifier

gain. F = 1 represents a noise-less amplifier, but in all real amplifiers F will be larger than 1.

Thermal noise added before the amplifier

Consider the case where an amplifier is inserted into the system at the end of the detection

Figure 4: Illustration of thermal noise being added before the amplification

line. The photons are detected, converted into electrons, passed through some circuitry with
thermal noise, and then amplified at the end with an amplifier with gain G and an excess noise
factor F . In this case, we can write the mean and deviation of the output signal as:

n̄ = Gn̄s (31)

σ =
√
FG
√

σ2
s + σ2

t . (32)

We should note that when there are multiple noise sources present, the variances add, not the
deviations.

We can consider two cases: with the amplifier, and without the amplifier. The SNR value with
the amplifier will be:

SNR|with amplifier =
(Gn̄s)

2

FG2 (σ2
s + σ2

t )
(33)

=
n̄2
s

F (σ2
s + σ2

t )
. (34)

Without the amplifier, the SNR would be

SNR|without amplifier =
n̄2
s

σ2
s + σ2

t

. (35)

Since F > 1, we can see that using the amplifier had only made the SNR worse. In other words,
an amplifier at the final stage only makes the signal quality worse.

Thermal noise added after the amplifier

Next, consider the case where the amplifier is inserted early on in the sequence before any
thermal noise gets added. In other words, the signal is amplified as soon as it is detected, then
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Figure 5: Illustration of thermal noise being added after the amplification

passed through the remaining circuitry. In this case, we can write the mean and deviations of
the signal as:

n̄ = Gn̄s (36)

σ =

√(√
FGσs

)2
+ σ2

t (37)

The resulting SNR values will be

SNR|with amplifier =
G2n̄2

s

FG2σ2
s + σ2

t

(38)

=
n̄2
s

Fσ2
s + σ2

t /G
2
. (39)

We can see that the effect of thermal noise has been reduced by a factor of G2, except for the
additional factor F . Without the amplifier, the SNR would have been:

SNR|without amplifier =
n̄2
s

σ2
s + σ2

t

. (40)

We can conclude that an amplifier can be used to reduce the effects of noise only if it is inserted
before that noise is added to the signal. This means the gain has to occur as close to the
photodetector as possible. This is the fundamental reason for why APDs perform significantly
better than other types of amplified photodetectors. The signal in an APD is amplified in the
adjacent layer, before it even leaves the semiconductor material.

The strategy of amplifying the signal before adding noise applies to any types of noise, not
just thermal noise. For example, if a cable has to be routed through a high noise environment,
adding an amplifier prior to the point where it enters the high noise environment will reduce
the impact of the noise by a factor of the gain.

Example

Consider a 1.5µm APD with ηe = 0.5, G = 25, and F = 2. The input optical power is 1µW. The
sampling rate is 500MHz. The detected signal is fed to a circuit that has an equivalent resistance
of 50Ω. Assuming everything is at room temperature, find the NEP of the system, using the APD
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as well as another equivalent regular photodiode (without gain).

n̄s =
ηeP

Bhν
= 7802 (41)

σs =

√
ηeP

Bhν
= 88 (42)

σt =

√
4kT

q2RB
= 5081 (43)

SNR|with APD =
n̄2
s

Fσ2
s + σ2

t /G
2
= 759 = 28.8 dB (44)

SNR|with PD =
n̄2
s

σ2
s + σ2

t

= 2.35 = 3.7 dB. (45)

Clearly we can see from this example that amplifying the signal immediately after detection has
boosted the quality from 2.35 (barely detectable) to 759 (high quality).
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Dynamic Range

Figure 6: Illustration of photodiode saturation

Dynamic range of a sensor is the ratio be-
tween the minimum detectable signal and
the maximum signal before the sensor be-
comes saturated. The minimum theoretically
detectable signal is the NEP, even though in
practice it will be several times that value.
The maximum signal also has a limit. Dur-
ing the integration time, electrons are col-
lected in a capacitor causing a linear increase
in voltage with charge. However, the circuit
will not be able to process any voltages higher
than some maximum value, which is typically
the supply voltage of the system. As a result,
the signal will become saturated at high in-
put power levels. If we represent this incident
power as Psat, the dynamic range becomes

DR =
Psat

NEP
. (46)

Figure 7: Representation of a 12-bit digital sys-
tem

Since all signals are eventually discretized
into a digital representation, the dynamic
range becomes the determining factor for
how many discretization levels are needed
to represent the signal (i.e., number of bits).
Since it is not possible to detect a signal
below NEP, there is no point in discretizing
at finer intervals than the NEP. Setting the
discretization increment to NEP, the number
of discrete levels between NEP and Psat be-
comes equal to the dynamic range DR. There-
fore, the number of binary bits (bit-width) re-
quired to represent the signal can be written
as

Bit Width = log2 (DR) . (47)

For example, if the dynamic range is 4000, a
12-bit system should be adequate to repre-
sent the signal. This is illustrated in Fig 7.

For comparison, the dynamic range of the hu-
man eye excluding the effects of the pupil and
dark adaptation is about 14 bit-widths. Even
the best cameras have only 12 bit-width of dy-
namic range. Consumer cameras have much lower dynamic range, of 8− 10 bit-widths worth.
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Homework 10
1. A 1.55µm optical communication receiver is being used to detect incoming photons us-

ing a 100MHz sampling rate. For noise calculation purposes, the equivalent electrical
impedance of the receiver can be assumed to be 75 Ω. The system must achieve a NEP
better than 10nW. Several options are being considered:

(a) A PIN photodiode with an external quantum efficiency (EQE) ηe = 0.9, and a negligible
dark current. This is the cheapest option.

(b) An APD with an ηe = 0.5, G = 25, F = 2.5, and a dark current of 1nA. But the cost is
much higher than a PIN.

(c) A thermoelectric cooling system to bring the temperature down to -50◦C. This will add
a moderate cost to the system.

• Find the lowest cost option to achieve the NEP objective (i.e., PIN, PIN+cooling, APD
or APD+cooling). Assume all factors other than the thermal noise remain the same
when the temperature is lowered.

Run this code
import k o t l i n . math .*
//Andrew Sarangan

fun main ( ) {
va l k = 1.38064852e−23
val q = 1 .602 e−19
val hv = 1 . 2 4 / 1 . 5 5*q
val B = 100.0 e6
val R = 75 .0
val P = 10 .0 e−9

fun SNR( P : Double , etaE : Double , T : Double , G : Double , F : Double , Id : Double ) {
va l ns = etaE*P/(B*hv )
val sigmaNs = ns . pow ( 0 . 5 )
va l sigmaT = ( 4 . 0* k*T /(q . pow ( 2 ) *R*B ) ) . pow ( 0 . 5 )
va l sigmaD = ( Id /(q*B ) ) . pow ( 0 . 5 )
va l snr = ns . pow ( 2 ) / ( F*sigmaNs . pow ( 2 ) + sigmaT . pow ( 2 ) /G . pow ( 2 ) + sigmaD .

pow ( 2 ) )
p r i n t l n ( ” ns = $ {”%.2 f ” . format ( ns ) } ” )
p r i n t l n ( ” sigma_ns = $ {”%.2 f ” . format ( sigmaNs ) } ” )
p r i n t l n ( ” sigma_t = $ {”%.2 f ” . format ( sigmaT ) } ” )
p r i n t l n ( ” sigma_d = $ {”%.2 f ” . format ( sigmaD ) } ” )
p r i n t l n ( ” SNR = $ {”%.4 f ” . format ( snr ) } = $ {”%.2 f ” . format ( log ( snr , base = 1 0 . 0 ) ) }

dB ” )
p r i n t l n ( )

}

//PIN at 300K
var etaE = 0 .9
var G = 1 . 0
var F = 1 . 0
var Id = 0.0
var T = 300.0
p r i n t l n ( ” PIN at $T K ” )
SNR( P , etaE , T , G , F , Id )

//PIN at −50C
T = 273.0−50.0
p r i n t l n ( ” PIN at $T K ” )
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SNR( P , etaE , T , G , F , Id )

//APD at 300K
etaE = 0 .5
Id = 1 . 0 e−9
T = 300.0
G = 25 .0
F = 2 . 5
p r i n t l n ( ” APD at $T K ” )
SNR( P , etaE , T , G , F , Id )

//APD at −50C
T = 273.0−50.0
p r i n t l n ( ” APD at $T K ” )
SNR( P , etaE , T , G , F , Id )

}
_________________________________________________________
PIN at 300.0 K
ns = 702 .25
sigma_ns = 26.50
sigma_t = 9 2 7 7 . 6 7
sigma_d = 0.00
SNR = 0.0057 = −2.24 dB

PIN at 223 .0 K
ns = 702 .25
sigma_ns = 26.50
sigma_t = 7998 .91
sigma_d = 0.00
SNR = 0.0077 = −2.11 dB

APD at 300.0 K
ns = 390.14
sigma_ns = 1 9 . 7 5
sigma_t = 9 2 7 7 . 6 7
sigma_d = 7 .90
SNR = 1 .0969 = 0.04 dB

APD at 223 .0 K
ns = 390.14
sigma_ns = 1 9 . 7 5
sigma_t = 7998 .91
sigma_d = 7 .90
SNR = 1 . 4 7 1 9 = 0 . 1 7 dB

The APD at 300K is barely detectable, but APD at -50C is the only system that can produce an
acceptable SNR.
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Optical Diffraction Gratings

Figure 1: Reflection grating.
Source: Thorlabs

A grating is a periodic structure etched into a reflective or
transmissive surface. The periodic nature of the interface
can significantly modify the way electromagnetic waves in-
teract with each other. A planar surface will produce a re-
flected wave at the same angle as the incident wave, but
when the interface is periodic, reflection (or transmission)
can occur at other angles. Most importantly, these other
angles are a strong function of wavelength, which allows
a grating to be used to produce a strongly wavelength-
sensitive behavior. For example, a grating is used in spec-
trometers to disperse the light (i.e., send different wave-
lengths in different directions). Gratings can also be used
as a wavelength-selective mirror, which we examined ear-
lier in DBR and DFB lasers. Gratings can also be used to
couple light into or out of a waveguide.

Figure 2: Close-up image of a
grating.

This chapter is only a brief summary of the main principles
of diffraction gratings. A comprehensive treatment is quite
complex and requires coupled wave theory, which we will
not pursue here.

Consider a plane wave incident on a planar optical inter-
face. We can easily derive the relationship between the in-
cident, reflected and transmitted waves. The relationship
comes from the requirement that the phase fronts must be
matched at the optical interface. In other words, the trans-
verse k-vector (the k-vector that is parallel to the optical
interface) must be equal on both sides of the interface. This
is illustrated in Fig 3. The interface can be viewed as a cou-
pling agent between the incident, reflected and transmitted waves.

Figure 3: Fresnel reflection and transmission at a planar optical interface
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For the reflected wave, this coupling can be mathematically expressed as

ki sin θi = kr sin θr (1)
k0ni sin θi = k0ni sin θr, (2)

which results in
θi = θr. (3)

For the transmitted wave, we have

ki sin θi = kt sin θt (4)
k0ni sin θi = k0nt sin θt, (5)

which results in
ni sin θi = nt sin θt. (6)

The intensity of the reflection and transmission is dictated by the field continuity relations. In
this description, we will focus only on the direction of the beam and not on its intensity. A
coupled-wave analysis is required for the the beam intensity in the presence of a grating.

A grating can be viewed as a standing wave at the optical interface. Instead of the interface being
planar, in this case the interface has a periodic surface height modulation. This is illustrated in
Fig 4. Alternatively, it can also be a periodic refractive index modulation. The grating is assumed
to have a period of Λ with a corresponding wave vector of

K =
2π

Λ
. (7)

Just like a plane optical interface, a grating interface can be viewed as a coupling agent between
the incident, reflected and transmitted waves. However, in this case the relationship between
the incident, reflected and transmitted waves will be different than the result derived for a
plane interface.

Figure 4: Wave interaction across an interface that has a grating

As stated before, a detailed analysis requires coupled-wave theory. But we can summarize
the main results, at least with respect to the direction of the diffracted waves, in terms of the
k-vectors of optical waves and the K-vector of the grating. Each reflected wave will have a
transverse k-vector that will satisfy the following relationship:

ki sin θi ± qK = ki sin θr (8)
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where q is an integer that refers to the order of the diffraction. q = 1 is referred to as the
first order diffraction, and q = 2 is the second order diffractions, etc.. This equation is almost
identical to the one before except for the presence of the grating vector K. We should also
be able to identify that equation (8) collapses to equation (1) when q = 0. In other words,
zeroth order reflection is the same as the ordinary reflection of the beam from a plane (non-
corrugated) interface.

For the transmitted beam, we an similarly write

ki sin θi ± qK = kt sin θt. (9)

The grating pitch Λ is an important parameter that determines all of the reflected or transmitted
angles except for the zeroth order (q = 0) beam. This is often quoted in product literature as
the groove density. For example, a groove density of 1200/mm will have a period of Λ = 833
nm.

Whether a grating will act as a reflector, as a transmitter or as both depends entirely on the
substrate refractive index nt. If the substrate is highly reflective, such as a metal, there will be
no transmitted orders. For highly transparent substrate, most of the light will be transmitted
through the substrate (and the amount of reflection will depend on the refractive index contrast
between ni and nt).

The intensity of each reflected or transmitted order, of course, is not part of our analysis. This
will be determined by the refractive index of the grating as well as the height and shape of the
modulation. Through careful design, it is possible to increase the power in one specific reflec-
tion (or transmission) order. A more detailed analysis requires the use of Rogorous Coupled
Wave Analysis (RCWA).

Reflection Grating

In the case of a reflection grating, the incident and reflected media will be the same. As a result,
equation (8) will become:

nik0 sin θi ± qK = nik0 sin θr, (10)

from which we can get the beam angle as

sin θr = sin θi ±
qK

nik0
(11)

= sin θi ±
qλ

niΛ
. (12)

We can see that there will be two beams corresponding to the ± signs. One is referred to as
the +q order, and the other is −q order. However, both orders may not always be present. In
some cases, one of the orders will result in a value for sin θr larger than 1. This corresponds to
an evanescent field, and will not produce a propagating beam in the far field.
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Transmission Grating

For transmission, the incident and reflected media will be different. We can use equation (9) to
get:

nik0 sin θi ± qK = ntk0 sin θt (13)

nt sin θt = ni sin θi ±
qλ

niΛ
. (14)

Example

If a 632nm HeNe wavelength is incident on a reflection grating with a groove density of 1200/mm,
at an angle of 45-degrees incidence, we can calculate the reflection angles corresponding to the
different orders by using

sin θr = sin θi ±
qλ

Λ
. (15)

Order sin θr θr
0 0.707 +45
+1 1.46 -
-1 -0.05 -2.9
+2 2.22 -
-2 -0.81 -54.0
+3 2.98 -
-3 -1.56 -

Table 1: Diffraction orders for θi = 45-deg, λ = 632nm with 1200/mm groove density

Therefore, only two orders will exist, because all other orders produce sin θr > 1. These reflec-
tion orders are shown in Fig 5.

Figure 5: Diffraction orders from a 632nm light incident at 45-deg on a diffraction grating with
1200/mm groove density

Had this been a transmission grating, the diffractions angles calculated above will be exactly
the same except they will be on the transmission side, assuming we are measuring the angles
on the air side and not inside the substrate.
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Grating Scattering Diagram

The form of equations (8) and (9) makes it possible to visualize the various diffraction orders
on a scattering diagram. The diagram corresponding to the previous example is shown in Fig 6.
We should be able to verify that this is a diagrammatic representation of equations (8) and (9).
The radius of the upper semi-circle is equal to the wave vector nik0. The +1 and −3 orders fall
outside the circle, representing a field that propagates evanescently, so it will exist only in the
near field.

Figure 6: Representation of the diffraction modes from the previous example on a scattering
diagram

The lower half of the circle is for transmission into the substrate. In the case of a transmission
grating, diffracted modes will exist in the lower part of the circle. The radius of the lower circle is
larger to account for the fact that the higher substrate index compared to the incident medium.
We should be able to identify that it is possible, in some cases, to have a transmitted order
without a reflected order. For example, if the substrate index were larger, it is possible for the
+1 order to fall inside the radius of the lower circle, resulting in a transmitted diffraction.

CCD Spectrometers

CCD spectrometers are widely used to measure the spectral content of an optical signal. Their
operation is primarily based on a diffraction grating. We can understand their basic operation
using the theory discussed above.

Fig 7 shows the simplified building blocks of a typical CCD spectrometer. A small slit is used as
a spatial filter of the incoming light beam. A collimating optic and a focusing optic are used to
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bring the beam to a focus on the CCD array. A diffraction grating is inserted in the path of the
collimated beam to spatially separate the light spectrum. The separation of wavelengths will
be determined by the groove density of the grating. This allows different wavelengths to come
to a focus at different positions on the CCD array (we are making the assumption that there is
no significant change in the focus distance due to the beam tilt). Each pixel on the CCD can be
mapped for a specific wavelength, allowing a full display the entire spectrum in real time.

Figure 7: Simplified representation of the CCD spectrometer

Using equation (15), and referring to Fig 7, we can show that the vertical displacement of the
beam focus on the CCD will be

yλ = D tan θt (16)

= D
sin θt√

1− sin2
θt

(17)

= D
sin θi ± qλ/Λ√

1− (sin θi ± qλ/Λ)
2
. (18)

If the pixel spacing on the CCD is ∆, the pixel number that corresponds to each yλ can be written
as

Nλ =
1

∆
(yλ − yo) (19)

where Nλ is the pixel number on the linear CCD array, and yo is the vertical translation distance
of the CCD (the distance of the first pixel from the zeroth order focus point) as depicted in Fig 7.

For the case of a normally incident beam, assuming +1 order, equation (18) becomes

yλ = D
λ/Λ√

1− λ/Λ2
=

Dλ√
Λ2 − λ2

. (20)

From this, we can get

Nλ =
1

∆

(
Dλ√

Λ2 − λ2
− yo

)
. (21)
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In practice, the pixel number that corresponds to each wavelength (equation (21)) is measured
rather than calculated. During the calibration process the pixel number corresponding to known
wavelength sources are measured, and then fitted to polynomial function to map all the pixels
to a different wavelength.

Also note that we have applied equation (8) to this scenario even though the incident wave on
the grating is not strictly a plane wave. This approximation is valid if the f/# of the focusing
optic is large. In general, the effects of non-planar waves can be accounted for in the model
by expressing the nonplanar wave as a sum of many plane waves using Fourier expansion. This
allows us to calculate the interaction of each plane wave with the grating separately. Finally,
an inverse Fourier transform is performed to combine all their effects together.

Example

Consider a 4096-pixel CCD spectrometer with a pixel pitch of 7µm, a grating groove density
of 1200/mm (Λ = 833nm) with a grating-to-CCD distance of D = 5cm. We’ll assume normal
incidence on the grating. Referring to Fig 7, the CCD can be vertically translated to produce
different spectral ranges. For instance, if the wavelength incident on the first pixel is 400nm, we
can calculate the translation distance as

yo = yλ =
Dλ√

Λ2 − λ2
=

50× 400√
833.32 − 4002

= 27.3 mm. (22)

We can then calculate the wavelength on the last pixel by re-arranging equation (21) as

λ =
Λ(Nλ∆+ yo)√

(Nλ∆+ yo)
2
+D2

= 621.7 nm. (23)

Therefore, the spectral range of this spectrometer is 400− 621nm. The average spectral resolu-
tion is

∆λ =
621− 400

4096
= 0.054 nm. (24)

It should be noted that this is an average resolution. The resolution will actually be a function
of wavelength, an expression for which can be obtained by taking the derivative of equation
(21).

Second-order (q = 2) Beam

So far we have ignored the effects of second order beam. In equation (18), the wavelength
appears as qλ. That means, the +1 diffraction at a wavelength λ will be identical to the +2
diffraction at a wavelength λ/2. This is an important problem in in spectrometers. For example,
the +1-order beam from 800nm wavelength will illuminate the same pixel as the +2-order beam
from 400nm. One way to avoid this problem is by limiting the input wavelengths to less than a
factor of two, such as 400 − 800nm. This can be done, for example, with a long-pass filter on
the entrance slit. Alternatively, or in addition to the above long-pass filter, it is also possible to
use a linearly varying long-pass filter directly in front of the CCD array. For example, the 400nm
beam incident at the same location as the 800nm beam will be blocked by this long-pass filter,
allowing a greater spectral range than a factor of two. This is shown in Fig 8.
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Figure 8: CCD spectrometer with long-pass filters to eliminate second order diffraction

Responsivity Correction

The measured raw signal from each pixel will not necessarily correspond to the actual intensity
of the light incident on that pixel. This is because the responsivity functionR is a strong function
of wavelength. If the application requires accurate quantification of the signal intensity, then
each pixel must be calibrated for their responsivity. Just like the spectral calibration, this is also
done by fitting the intensity from a source with a known intensity and then fitting those data
points to a polynomial.

Practical Implementation

Practical implementation of CCD spectrometers use reflective optics rather than refractive op-
tics. Folding the beam using two or more mirrors helps to reduce the amount of space required
for the system. An example is shown in Fig 9. Not shown in the figure are the CCD array and the
varying long-pass filter (which is attached to the CCD), and the circuit board. The CCD sensor is
part of a circuit board that collects and processes the signals, and sends it to a computer via a
USB connection. Portable CCD spectrometers have become extremely common and inexpensive.

Waveguide Gratings

Gratings can also be incorporated into optical waveguides to accomplish useful functions, such
as reflection, filtering and coupling. The grating can be part of the waveguide core, or cladding.
The exact location affects the strength of the interaction with the grating, not the diffraction
orders. Gratings in used in Distributed Bragg Reflector (DBR) lasers and Distributed Feedback
(DFB) lasers to produce feedback. They are also used in Fiber Bragg Gratings (FBG) in fiber
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Figure 9: Internal construction of a CCD spectrometer

Figure 10: Waveguide with a grating etched into the top cladding

sensors and fiber lasers.

Radiation Mode In-Coupling

Without a grating, it is impossible to couple light into the waveguide from outside the cladding.
This is a fundamental mathematical limitation that arises from the principle of orthogonality.
Compared to edge-coupling, surface-coupling is a convenient method to couple light into a
waveguide. This can be accomplished with the use of an appropriate grating.

Referring back to the scattering diagram concept that was introduced in Fig 6, the guided mode
can be placed on the lower half of the circle. Since the mode propagation is parallel to the
surface, it will have a reflection angle θt = π/2. Furthermore, the propagation constant β will
typically be slightly higher than the substrate medium. This is because the waveguide core
index (which is not indicated in the scattering diagram) is higher than the clad. Therefore, the
position of this guided mode will exist slightly outside the lower radius, as shown in Fig 11.

192



Andrew Sarangan

Figure 11: Scattering diagram for coupling into a waveguide

To couple an incident beam at an angle θi into the waveguide, we can modify equation (9) as

k0ni sin θi ± qK = k0nt sin θt (25)
k0ni sin θi ± qK = β. (26)

Therefore, we don’t really need to know the substrate index, just the effective index of the
guided mode. Assuming ni = 1.0 and β = k0neff, this can also be written in terms of the free
space wavelength as

Λ =
±qλ

neff − sin θi
. (27)

If we limit to +1 order diffraction, this becomes

Λ =
λ

neff − sin θi
. (28)

Therefore, if we know the angle of incidence, we can calculate the required grating period. Al-
ternatively, if we know the grating period, we can calculate the angle of incidence.

Example

If a waveguide mode has an effective index of 1.8, we can find the required grating period to
couple 632 nm light at an incident angle of 45-degrees. Assuming +1 order diffraction:

Λ =
λ

neff − sin θi
=

632

1.8− sin (45)
= 578.3 nm. (29)

We can also note that the grating will produce −1 order. Using equation (12), we can calculate
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the radiation angle to be

sin θd = sin θi −
λ

Λ
= −0.38 (30)

θd = −22.6 deg. (31)

Radiation Mode Out-Coupling

It is also possible to do the reverse of the previous example, i.e., couple a guided mode to a
radiation field. This makes it convenient to extract power out of the waveguide without relying
on end-facets or edge-coupling. The same grating that couples light into a waveguide will also
couple it out of the waveguide. Therefore the equations are almost identical to the in-coupling
case. We can write this as

k0nt sin θt ± qK = k0ni sin θr (32)
β ± qK = k0ni sin θr. (33)

Compared to equation (26), we can see that the k0n1 and β have switched places. This is because
the input wave is the guided mode, and the output wave is the radiation wave. This results in

Λ =
±qλ

sin θr − neff
. (34)

Notice that compared to equation (28), neff and sin θr have switched places.

Example

For the same waveguide as the previous example, with an effective index of 1.8, we can find the
required grating period to out-couple 632 nm normal to the surface. In this case, the −1-order
will diffract the forward-traveling waveguide mode to a surface-normal radiation field (θr = 0).
This results in

Λ =
−λ

sin θr − neff
=

632

1.8− sin (0)
= 351.1 nm. (35)

This is shown diagrammatically in Fig 12.

Bragg Reflector

While the previous examples were about coupling between a radiation mode and a guided
mode, it is also possible to use a grating to couple between two guided modes. One exam-
ple of this is the Distributed Bragg Reflector (DBR), where a forward traveling waveguide mode
is coupled to a backward traveling waveguide mode.

In this case, the incident wave is the forward-travelling guided mode, and the diffracted wave
is the backward-travelling guided mode. Therefore,

ntk0 sin θi ± qK = ntk0 sin θt. (36)
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Figure 12: Scattering diagram for coupling out of a waveguide at 0-deg

Figure 13: Scattering diagram of a DBR reflector

In this case, the incident wave will have an angle π/2 and the diffracted wave will have −π/2,
resulting in

ntk0 sin θi = β (37)
ntk0 sin θr = −β. (38)

Therefore,
β ± qK = −β, (39)

from which we can get
±qK = −2β. (40)

Assuming first order diffraction, we would need q = −1, resulting in

K = 2β (41)

Λ =
λ

2neff
. (42)
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In other words, the required grating period is half the wavelength (in the medium) of the guided
mode.

Example

Assuming an effective index of 3.0 and a wavelength of 1550 nm, the required grating period
that will produce a DBR reflection will be

Λ =
λ

2neff
=

1550

2× 3
= 258.3 nm. (43)
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Homework 11
1. A spectrometer is being designed for operation between 450nm and 950nm, using a 8192-

pixel CCD with a pixel pitch of 3µm. The distance between the grating and the CCD is 10cm,
and the beam is designed to be normally incident on the grating. Calculate the required
groove density of the grating.
Run this code
import k o t l i n . math .*
//Andrew Sarangan

fun NewtonRaphson ( f : ( input : Double ) −> Double , i n i t i a l X : Double ) : Double {
val dx = 1 . 0 e−10* i n i t i a l X
var x1 = i n i t i a l X
var fprime : Double
var x2 : Double
var d i f f : Double
do {

fprime = ( f ( x1 ) − f ( x1−dx ) ) /dx
x2 = x1 − f ( x1 ) / fprime

d i f f = abs ( ( x2−x1 ) / x1 )
x1 = x2

} while ( d i f f > 1 . 0 e−12)
return x1

}

fun main ( ) {
//Use equation ( 2 1 ) for 450nm and 950nm wavelengths .
// At 450nm, N w i l l be equal to 1 ( f i r s t p i x e l )
// At 950nm, N w i l l be equal to 8192 ( l a s t p i x e l )
//We have two equations and two unknowns ( grat ing period and y0 )
// Substract one equation from the other to el iminate y0
//Now we have one equation with one unknown ( grat ing period )
// This i s the funct ion f ( P ) in the fo l lowing code .

fun f ( Lambda : Double ) = ( 1 . 0 / 3 0 0 0 . 0 ) * (950 .0*10 .0 e7 /(Lambda . pow ( 2 ) −950.0.pow ( 2 ) ) .
pow ( 0 . 5 ) − 450 .0*10 .0 e7 /(Lambda . pow ( 2 ) −450.0.pow ( 2 ) ) . pow ( 0 . 5 ) ) − 8191 .0

val Lambda = NewtonRaphson ( : : f , 1 0 0 0 . 0 )
p r i n t l n ( ” $ {”%.2 f ” . format ( Lambda) } nm” )

}

> >2358.34 nm
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Liquid Crystal Devices

Nematic Liquid Crystals

A liquid crystal (LC) is a state of matter which shares some of the properties of a crystalline solid
as well as that of a liquid. Specifically, it can have a long-range order like in a solid crystal, but
it can also flow like a liquid. This state exists within a temperature range above the melting
temperature of the material but below an upper temperature limit above which it turns into an
isotropic liquid. Just like in solid crystals, there is a large number of liquid crystals with different
orientations and properties. The most common type is known as the nematic liquid crystal. The
molecules of nematic crystals are rod-shaped and align themselves parallel to each other to
form a crystalline structure as shown in Fig 1. Hence, nemaic liquid crystals will exhibit uniaxial
anisotropic optical properties. In other words, the dielectric constant (and hence the refractive
index) will be different when the electric field is parallel to the rods as compared to when the
electric field is in either of the two transverse directions. The birefringence is defined as the
difference between these two refractive index values, and will be denoted as ∆n.

Figure 1: Nematic Liquid Crystals.

When a nematic liquid crystal is placed on a flat substrate, such as glass, the molecules typically
orient themselves parallel to the substrate because this produces the lowest energy state of the
liquid crystal. However, this can result in a random in-plane orientations. In order to force the
molecules to align along a specific direction on the surface, one approach is to etch fine grooves
on the substrate. This changes the symmetry of the plane. Molecules that align parallel to the
grooves will have a lower free energy than those that align across the grooves. This forces
the majority of nematic liquid crystal molecules to align parallel to the grooves. However, the
asymmetry created by this technique is quite small, and it is difficult to ensure a large degree of
alignment. Instead, a more effective technique is to utilize a separate alignment layer. Typically,
this alignment layer is an organic film such as a polyamide. By buffing this polyamide layer with
a finely textured cloth, we can create not only physical grooves, but the polyamid molecules will
also re-orient themselves parallel to the rubbing direction. The molecular interaction between
the liquid crystal molecules and the polyamide molecules enables a larger asymmetry in free
energy to be created. This is by far the most commonly used method to align the liquid crystals
on substrate.

What makes liquid crystals interesting is the fact that their molecules can move in response to
an external electric field. When an electric field is applied, it will alter the electrostatic energy of
the liquid crystal. However, since the liquid crystal is highly ansiotropic, this change in energy
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Figure 2: Attachment of nematic liquid crystals to a surface with an alignment layer

will depend on the direction of the electric field with respect to the molecular orientation. In
a nematic liquid crystal, the lowest electrostatic energy is achieved when the rods are parallel
to the applied electric field. Unlike in a solid crystal, the molecules in a liquid crystal will be
able to re-orient themselves in a new direction the minimize total free energy of the system. In
other words, we have two competing effects that determine the orientation of the liquid crystal
molecules: The first is the polyamide alignment layer, which forces the liquid crystal molecules
to be parallel to the polyamide molecules. The second effect is the applied electric field. The
resulting final orientation will be determined by both of these effects.

Figure 3: A nematic liquid crystal cell (with parallel alignment layers), with and without an ap-
plied field.

A liquid crystal cell consists of liquid crystal molecules sandwiched between two parallel sub-
strates with electrodes on their inner surfaces (with appropriate alignment layers on each), as
shown in Fig 3. When there is no field applied, all of the molecules in the liquid crystal will be
parallel to the surface, and the incident light will experience two different refractive index val-
ues depending on its polarization. With a large voltage applied, the molecules will turn in the
direction of the applied voltage. This results in the birefringence of the liquid crystal becoming
zero. For intermediate voltages, the birefringence will have a smaller value. Therefore, nematic
liquid crystals allow the user to control the birefringence of a liquid crystal cell.
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A simple liquid crystal light modulator

Figure 4: A nematic liquid crystal light modulating cell, with and without an applied field.

The simplest liquid crystal light modulator consists of a cell as shown in Fig 3 with two crossed
polarizers at the incident and exit ends of the cell. If the incident polarizer is at 45◦ with re-
spect to the alignment layer, the incident wave will be split into two orthogonal components
traveling at different phase velocities through the liquid crystal. The phase difference between
the two polarizations will be k0∆nz where z is the propagation direction. When the total phase
difference becomes equal to π, the polarization of the incident wave would have rotated by 90◦.
Since the exit polarizer is rotated by 90◦ compared to the incident polarizer, it will result in a
maximum transmission through this structure. Mathematically the transmission can be written
as

T = sin2

(
k0∆nt

2

)
(1)

where t is the thickness of the liquid crystal cell. The birefringence value ∆n will be a function
of voltage, having its maximum value at zero field, and declining to zero as the field reaches a
value of ET . Increasing the field beyond this value will not change anything.

We can verify that the transmission will be zero when ∆n is zero. Furthermore, we can also
verify that the transmission is independent of wavelength. In other words, all wavelengths will
have zero transmission. On the other hand, when ∆n is at its maximum value ∆nmax (which
corresponds to zero applied field), the transmission value would be higher, but it will not be
the same for all wavelengths. If we want the transmission at a wavelength of 550nm to be 1.0,
assuming ∆nmax = 0.1, the required cell thickness can be obtained by solving for

k0∆nmaxt

2
= mπ +

π

2
(2)

where m is an integer. Assuming m = 0, the smallest cell thickness can be calculated as
t = 2.75µm. (3)
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This cell thickness would ensure that the 550nm transmission will decline from 1.0 to zero as
the voltage in the cell in increased from zero to some sufficiently high value to fully polarize
the liquid crystal molecules. The performance will be different at other wavelengths. Clearly,
we cannot satisfy k0∆nmaxt

2 = π
2 at all wavelengths simultaneously. The plot of transmission

versus ∆n is shown in Fig 5. We can see that the transmission for 550nm wavelength declines
monotonically from 1.0 to zero, but 400nm starts at a lower value, increases and then decreases
to zero. Similarly, 700nm starts at a value smaller than 1.0 and declines towards zero. As a result,
this liquid crystal cell will not be able to modulate all wavelengths equally. When a voltage is
applied, the transmission spectrum will undergo a complex change, eventually settling down at
a transmission of zero for all wavelengths.

Figure 5: Transmission vs birefringence value of a parallel nematic liquid crystal cell, usingm =
0, for λ = 400nm, 550nm and 700nm.

Using larger values of m would actually make this spectral sensitivity worse. For example, Fig
6 shows the transmission plot for m = 1 (corresponding to a cell thickness of 8.25µm). We can
see that the oscillation pattern becomes more frequent as the cell is made thicker. As a result,
this type of cell makes it difficult to achieve achromatic light modulation.

Figure 6: Same as Fig 5, exceptm = 1.
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Twisted Nematic Liquid Crystal Light Modulator

In the previous case, the incident light was at 45◦ to the liquid crystal axis, and the polarization
rotation was as a result of the phase velocity difference between the orthogonal polarizations.
Naturally, the phase retardation between the two polarizations will be a function of wavelength,
resulting in a modulation response that had significant spectral sensitivity. We can reduce this
spectral sensitivity by allowing the light to be incident parallel to the liquid crystal axis, and
rotating the liquid crystal axis instead. This can be accomplished by rotating the alignment
layers by 90◦. As a result, the molecules attached to the alignment layers will be rotated by 90◦

from the incident face to the exit face. This is illustrated in Fig 7.

Figure 7: A twisted nematic liquid crystal cell with rotated alignment layers.

The construction of a light modulating cell is shown in Fig 8.

Figure 8: A twisted nematic liquid crystal lightmodulating cell, with andwithout an applied field.
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The analysis of light propagation through a twisted nematic crystal is somewhat more involved
than the parallel case, but we can summarize the result as

T = cos2 X +

(
k0∆nt

2X

)2

sin2
X, (4)

where X is defined as
X =

√
(π/2)

2
+ (k0∆nt/2)

2
. (5)

When ∆n = 0 (at E > ET ), we can verify that T = 0 regardless of wavelength. This is similar to
the untwisted liquid crystal modulator. When ∆n is at ∆nmax, the we can solve for the T = 1
condition by setting X = mπ. This results in

(π/2)
2
+ (k0∆nt/2)

2
= (mπ)

2 (6)

t =
λ

∆n

√
m2 − 1

4
. (7)

Figure 9: Transmission vs birefringence value of a twisted nematic liquid crystal cell, usingm = 1
for λ = 400nm, 550nm and 700nm.

Figure 10: Same as Fig 9, exceptm = 5.
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Assuming a wavelength of 550nm, ∆nmax = 0.1, and m = 1, we can get t = 4.7µm. The transmis-
sion vs ∆n is shown in Fig 9. Although the performance may not appear to be particularly better
than the parallel nematic cell, when m becomes larger, we can observe a significant difference.
The transmission curve for m = 5 (which corresponds to a cell thickness of 27.3µm) is shown in
Fig 10. We can clearly see that the transmission remains high for all wavelengths for a relatively
long range of ∆n, and then abruptly falls to zero at ∆n approaches zero.

Of course, we could have placed the incident and exit polarizers parallel to each other instead
of being rotated by 90◦. This would result in zero transmission when the field is zero, and a high
transmission when the field is greater than ET . The first case is known as normally-white (NW),
and the second case is known as normally-dark (ND).

Twisted Nematic Liquid Crystal Displays

Transmissive liquid crystals are widely used in computer displays and televisions. A light source
is placed behind the entire panel, and is modulated on or off at each pixel location. The material
used for the electrodes is a mixture of indium oxide (In2O3) and tin oxide (SnO2), also known
as ITO (Indium-Tin-Oxide). This is a conductive material that is also optically transparent. The
twisted nematic liquid crystal is sandwiched between these two substrates. The thickness of
the liquid crystal is controlled by placing glass spheres of precisely the right diameter to act as
rigid spacers. To enable each pixel to be individually controlled, row and column electrodes are
patterned (in separate ITO layers) on one of the substrates, and a ground plane is deposited on
the other substrate. At the intersection of each row and column a thin film transistor (TFT) is
placed to allow activation of that liquid crystal pixel. A TFT is a thin film version of a crystalline
semiconductor transistor. It is produced by deposited amorphous silicon on the panels (rather
than on bulk crystalline silicon) and then patterning them into transistor configurations. The
row signal is connected to the drain terminal of the TFT, and the column is connected to the
gate. This configuration is known as active matrix display because each pixel can be individually
modulated by applying the voltage on the appropriate row and column. Crossed polarizers are
placed on the outer faces of this configuration. Color can be introduced to each pixel by placing
an absorptive color filter to only allow a narrow band of light to pass through (red, green or
blue). This configuration is shown in Fig 11.

Fig 12 shows a microscope image of an LCD screen displaying three horizontal colored lines.
The white background is produced by illuminating all three primary color pixels. Black pixels
have no light output from any pixel. The red line is produced by illuminating just the red pixels.
Other color combinations (such as cyan) are produced by controlling the amplitude of each
color pixel.
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Figure 11: Transmissive liquid crystal configuration using thin film transistors

Figure 12: Microscope image of an LCD screen with three horizontal lines
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In-plane switching (IPS)

In this configuration, the electrodes are placed side-by-side instead of across the faces of the
liquid crystal cell. This produces an electric field that is parallel to the substrate’s surface. In the
absence of a field, the liquid crystal will exhibit the same behavior as the twisted nematic cell.
With the field turned on, the molecules will align parallel to the field (effectively untwisting),
resulting in a case similar to the parallel (untwisted) liquid crystal cell.

The polarizers across the cell are placed in the same orientation and in parallel to the inci-
dent alignment layer. When the applied field is zero, and if the twisted nematic cell thickness
is correctly chosen to provide 90◦ polarization rotation, we will have zero transmission. When
a field higher than ET is applied, the molecules will untwist, and will be parallel to the inci-
dent (and exit) polarizers. Therefore the transmission will rise to 1.0. Therefore, this will be a
normally-dark (ND) configuration. The transmission function can be written as:

TE=0 = cos2 X +

(
k0∆nmaxt

2X

)2

sin2
X = 0 (8)

TE=Emax = 1.0 (9)

With the field applied, even though the majority of the molecules will align parallel to the ap-
plied field, the ones closest to the substrate will still be rotated to align with the alignment
layer. However, its contribution to the overall phase will be minimal since this region will be
just a few monolayers thick.

Figure 13: A twisted nematic in-plane liquid crystal light modulating cell, with and without an
applied field.

Reflective Liquid Crystal Displays
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